Facebook
ODBIERZ TWÓJ BONUS :: »

Data Science Algorithms in a Week (ebook)(audiobook)(audiobook)Książka w języku angielskim

Okładka książki/ebooka Data Science Algorithms in a Week

Okładka książki Data Science Algorithms in a Week

Okładka książki Data Science Algorithms in a Week

Okładka książki Data Science Algorithms in a Week

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
205
3w1 w pakiecie:
     PDF
     ePub
     Mobi

Ebook

149,00 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Przenieś na półkę

Do przechowalni

Build strong foundation of machine learning algorithms In 7 days.

About This Book

  • Get to know seven algorithms for your data science needs in this concise, insightful guide
  • Ensure you're confident in the basics by learning when and where to use various data science algorithms
  • Learn to use machine learning algorithms in a period of just 7 days

Who This Book Is For

This book is for aspiring data science professionals who are familiar with Python and have a statistics background. It is ideal for developers who are currently implementing one or two data science algorithms and want to learn more to expand their skill set.

What You Will Learn

  • Find out how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problems
  • Identify a data science problem correctly and devise an appropriate prediction solution using Regression and Time-series
  • See how to cluster data using the k-Means algorithm
  • Get to know how to implement the algorithms efficiently in the Python and R languages

In Detail

Machine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.

This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.

This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.

Style and approach

Machine learning applications are highly automated and self-modifying which continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly.

O autorze

1 David Natingga

Dávid Natingga jest naukowcem specjalizującym się w dziedzinie sztucznej inteligencji. Zajmuje się teorią obliczeń i wykorzystaniem matematyki w algorytmach SI. Wcześniej optymalizował algorytmy na potrzeby uczenia maszynowego oraz big data. Jest autorem ciekawego algorytmu sugerowania produktów na podstawie preferencji klientów i cech gatunków kawy. W 2016 roku spędził osiem miesięcy jako research visitor w Japońskim Instytucie Naukowo-Technologicznym w Kanazawie.

Zamknij

Wybierz metodę płatności