×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

RAG-Driven Generative AI. Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone Denis Rothman

(ebook) (audiobook) (audiobook) Książka w języku 1
RAG-Driven Generative AI. Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone Denis Rothman - okladka książki

RAG-Driven Generative AI. Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone Denis Rothman - okladka książki

RAG-Driven Generative AI. Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone Denis Rothman - audiobook MP3

RAG-Driven Generative AI. Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone Denis Rothman - audiobook CD

Autor:
Denis Rothman
Serie wydawnicze:
Expert Insight
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
334
Dostępne formaty:
     PDF
     ePub
Zostało Ci na świąteczne zamówienie opcje wysyłki »
RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs.

This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs.

You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.

Wybrane bestsellery

O autorze książki

Denis Rothman graduated from Sorbonne University and Paris-Diderot University, designing one of the very first word2matrix patented embedding and patented AI conversational agents. He began his career authoring one of the first AI cognitive natural language processing (NLP) chatbots applied as an automated language teacher for Moët et Chandon and other companies. He authored an AI resource optimizer for IBM and apparel producers. He then authored an advanced planning and scheduling (APS) solution used worldwide.

Denis Rothman - pozostałe książki

Zobacz pozostałe książki z serii Expert Insight

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
134,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.