×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Transformery w przetwarzaniu języka naturalnego i widzenia komputerowego. Generatywna AI oraz modele LLM z wykorzystaniem Hugging Face, ChatGPT, GPT-4V i DALL-E 3. Wydanie III Denis Rothman

(ebook) (audiobook) (audiobook)
Transformery w przetwarzaniu języka naturalnego i widzenia komputerowego. Generatywna AI oraz modele LLM z wykorzystaniem Hugging Face, ChatGPT, GPT-4V i DALL-E 3. Wydanie III Denis Rothman - okladka książki

Transformery w przetwarzaniu języka naturalnego i widzenia komputerowego. Generatywna AI oraz modele LLM z wykorzystaniem Hugging Face, ChatGPT, GPT-4V i DALL-E 3. Wydanie III Denis Rothman - okladka książki

Transformery w przetwarzaniu języka naturalnego i widzenia komputerowego. Generatywna AI oraz modele LLM z wykorzystaniem Hugging Face, ChatGPT, GPT-4V i DALL-E 3. Wydanie III Denis Rothman - audiobook MP3

Transformery w przetwarzaniu języka naturalnego i widzenia komputerowego. Generatywna AI oraz modele LLM z wykorzystaniem Hugging Face, ChatGPT, GPT-4V i DALL-E 3. Wydanie III Denis Rothman - audiobook CD

Autor:
Denis Rothman
Wydawnictwo:
Helion
Ocena:
Stron:
685
Druk:
oprawa miękka

Transformery zrewolucjonizowały przetwarzanie języka naturalnego, analizę obrazów i komputerowe widzenie. Oparte na transformerach duże modele generatywne dostępne za pośrednictwem systemu ChatGPT z GPT-4V w zadaniach przetwarzania tekstu i obrazów przewyższają wydajność człowieka. Aby uczestniczyć w tej nowej erze technologicznej, musisz zrozumieć, jak działają transformery.

Tę książkę docenią praktycy: analitycy danych i inżynierowie uczenia maszynowego. Opisano w niej różne architektury transformerów — od pierwszych modeli podstawowych po najnowsze osiągnięcia w generatywnej sztucznej inteligencji. Dzięki lekturze nauczysz się wstępnego szkolenia i dostrajania modeli LLM, a także pracy nad różnymi przypadkami użycia. Poznasz takie problemy jak halucynacje i zagrożenia prywatności, a następnie dowiesz się, jak je łagodzić. W książce pokazano ponadto, jak poprawiać dokładność modeli LLM i uzyskiwać większą kontrolę nad generowanymi przez nie wynikami. Nie zabrakło ciekawych szczegółów dotyczących modeli generatywnych opartych na transformerach, modeli wizyjnych i architektur multimodalnych, jak również opisu najlepszych praktyk.

Najciekawsze tematy:

  • wstępne szkolenie i dostrajanie modeli LLM
  • platformy: Hugging Face, OpenAI i Google Vertex AI
  • tokenizery i najlepsze praktyki wstępnego przetwarzania danych językowych
  • techniki łagodzenia halucynacji
  • wizualizacja aktywności modeli transformerów z użyciem systemów BertViz, LIME i SHAP
  • modele wizyjne i multimodalne oparte na transformerach: CLIP, DALL-E 2, DALL-E 3 i GPT-4V

Sztuczna inteligencja, która widzi i mówi — przekonaj się, jak to działa!

Wybrane bestsellery

O autorze książki

Denis Rothman graduated from Sorbonne University and Paris-Diderot University, designing one of the very first word2matrix patented embedding and patented AI conversational agents. He began his career authoring one of the first AI cognitive natural language processing (NLP) chatbots applied as an automated language teacher for Moët et Chandon and other companies. He authored an AI resource optimizer for IBM and apparel producers. He then authored an advanced planning and scheduling (APS) solution used worldwide.

Denis Rothman - pozostałe książki

Helion - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.