×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Mastering PyTorch. Build powerful neural network architectures using advanced PyTorch 1.x features Ashish Ranjan Jha, Dr. Gopinath Pillai

(ebook) (audiobook) (audiobook) Książka w języku 1
Mastering PyTorch. Build powerful neural network architectures using advanced PyTorch 1.x features Ashish Ranjan Jha, Dr. Gopinath Pillai - okladka książki

Mastering PyTorch. Build powerful neural network architectures using advanced PyTorch 1.x features Ashish Ranjan Jha, Dr. Gopinath Pillai - okladka książki

Mastering PyTorch. Build powerful neural network architectures using advanced PyTorch 1.x features Ashish Ranjan Jha, Dr. Gopinath Pillai - audiobook MP3

Mastering PyTorch. Build powerful neural network architectures using advanced PyTorch 1.x features Ashish Ranjan Jha, Dr. Gopinath Pillai - audiobook CD

Autorzy:
Ashish Ranjan Jha, Dr. Gopinath Pillai
Serie wydawnicze:
Mastering
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
450
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (152,10 zł najniższa cena z 30 dni)

169,00 zł (-10%)
152,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(152,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Deep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models.
The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai.
By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.

Wybrane bestsellery

O autorze książki

Ashish Ranjan Jha received his bachelor's degree in electrical engineering from IIT Roorkee (India), a master's degree in Computer Science from EPFL (Switzerland), and an MBA degree from Quantic School of Business (Washington). He has received a distinction in all 3 of his degrees. He has worked for large technology companies, including Oracle and Sony as well as the more recent tech unicorns such as Revolut, mostly focused on artificial intelligence. He currently works as a machine learning engineer.

Ashish has worked on a range of products and projects, from developing an app that uses sensor data to predict the mode of transport to detecting fraud in car damage insurance claims. Besides being an author, machine learning engineer, and data scientist, he also blogs frequently on his personal blog site about the latest research and engineering topics around machine learning.

Zobacz pozostałe książki z serii Mastering

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
152,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.