Python w analizie danych. Przetwarzanie danych za pomocą pakietów Pandas i NumPy oraz środowiska IPython. Wydanie II
- Wydawnictwo:
- Helion
- Ocena:
- 5.7/6 Opinie: 3
- Stron:
- 480
- Druk:
- oprawa miękka
- Dostępne formaty:
-
PDFePubMobi
Sprawdź nowe wydanie
Python w analizie danych. Przetwarzanie danych za pomocą pakietów pandas i NumPy oraz środowiska Jupyter. Wydanie III
Wes McKinney
Opis książki: Python w analizie danych. Przetwarzanie danych za pomocą pakietów Pandas i NumPy oraz środowiska IPython. Wydanie II
Analiza danych stała się samodzielną dyscypliną wiedzy interesującą specjalistów z wielu branż: analityków biznesowych, statystyków, architektów oprogramowania czy też osoby zajmujące się sztuczną inteligencją. Wydobywanie informacji ze zbiorów danych pozwala na uzyskanie wiedzy niedostępnej w inny sposób. W tym celu dane trzeba odpowiednio przygotować, oczyścić, przetworzyć i oczywiście poddać analizie. Warto również zadbać o ich wizualizację. Do tych wszystkich zadań najlepiej wykorzystać specjalne narzędzia opracowane w języku Python.
Prezentowana książka jest drugim, zaktualizowanym i uzupełnionym, wydaniem klasycznego podręcznika napisanego z myślą o analitykach, którzy dotychczas nie pracowali w Pythonie, oraz o programistach Pythona, którzy nie zajmowali się dotąd analizą danych ani obliczeniami naukowymi. Przedstawiono tu możliwości oferowane przez Pythona 3.6 oraz najnowsze funkcje pakietów Pandas i NumPy, a także środowisk IPython i Jupyter. Przy opisie poszczególnych narzędzi analitycznych wyjaśniono ich działanie i zaprezentowano przykłady ich wykorzystania w sposób efektywny i kreatywny. Ta książka powinna się znaleźć w podręcznej bibliotece każdego analityka danych!
Najważniejsze zagadnienia:
- Eksploracja danych za pomocą powłoki IPython i środowiska Jupyter
- Korzystanie z pakietów NumPy i Pandas
- Tworzenie wizualizacji danych za pomocą pakietu Matplotlib
- Praca z danymi regularnych i nieregularnych szeregów czasowych
- Rozwiązywanie rzeczywistych problemów analitycznych
Python: poznaj idealne narzędzie do analizy danych!
Wybrane bestsellery
-
Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively...(0,00 zł najniższa cena z 30 dni)
237.15 zł
279.00 zł(-15%) -
Po przyswojeniu zagadnień związanych z językiem C# i aplikacjami konsoli dowiesz się, jak tworzyć praktyczne aplikacje i usługi z wykorzystaniem biblioteki ASP.NET Core, a także wzorzec MVC i technologię Blazor. Zapoznasz się z metodami stosowania wielozadaniowości do poprawy wydajności i skalowa...
C# 10 i .NET 6 dla programistów aplikacji wieloplatformowych. Twórz aplikacje, witryny WWW oraz serwisy sieciowe za pomocą ASP.NET Core 6, Blazor i EF Core 6 w Visual Studio 2022 i Visual Studio Code. Wydanie VI C# 10 i .NET 6 dla programistów aplikacji wieloplatformowych. Twórz aplikacje, witryny WWW oraz serwisy sieciowe za pomocą ASP.NET Core 6, Blazor i EF Core 6 w Visual Studio 2022 i Visual Studio Code. Wydanie VI
(0,00 zł najniższa cena z 30 dni)103.35 zł
159.00 zł(-35%) -
Ta książka jest praktycznym i wyczerpującym przewodnikiem, dzięki któremu w pełni wykorzystasz możliwości Kali Linux. Opisano w niej wiele interesujących zagadnień związanych z przeprowadzaniem testów penetracyjnych. Dowiesz się, jak zbudować nowoczesne środowisko testowe z użyciem kontenerów Doc...(0,00 zł najniższa cena z 30 dni)
64.35 zł
99.00 zł(-35%) -
Oto intuicyjny przewodnik dla średnio zaawansowanych programistów Pythona, pomyślany tak, by przyswajać zasady programowania zorientowanego obiektowo podczas praktycznych ćwiczeń. Dowiesz się, jakie problemy wiążą się z zastosowaniem podejścia proceduralnego i jak dzięki podejściu obiektowemu pis...
Python zorientowany obiektowo. Programowanie gier i graficznych interfejsów użytkownika Python zorientowany obiektowo. Programowanie gier i graficznych interfejsów użytkownika
(0,00 zł najniższa cena z 30 dni)57.85 zł
89.00 zł(-35%) -
To drugie, zaktualizowane i poprawione wydanie bestsellerowego podręcznika Programowania w Pythonie pozwoli Ci błyskawicznie zacząć tworzyć kod, który działa! Zaczniesz od zrozumienia podstawowych koncepcji programistycznych, następnie nauczysz się zapewniać programom interaktywność i wykształcis...(0,00 zł najniższa cena z 30 dni)
64.35 zł
99.00 zł(-35%) -
To kompleksowy podręcznik do nauki programowania w Pythonie. Jego piąte wydanie zostało gruntownie zaktualizowane i rozbudowane o dodatkowe treści. Omówiono tu najnowsze wersje Pythona w liniach 3.X i 2.X, czyli 3.3 i 2.7, i dodano opisy nowych lub rozszerzonych mechanizmów, takich jak obsługa fo...(0,00 zł najniższa cena z 30 dni)
129.35 zł
199.00 zł(-35%) -
Dzięki tej książce nauczysz się przekształcać suche dane liczbowe w pełną empatii narrację! Aby spełniły one swoje zadanie, ktoś musi przedstawić zawarte w nich informacje w postaci opowieści. W tej publikacji wyczerpująco i praktycznie opisano przebieg tego procesu. Jej lektura sprawi, że rozwin...
Opowieści ukryte w danych. Wyjaśnij dane i wywołaj działania za pomocą narracji Opowieści ukryte w danych. Wyjaśnij dane i wywołaj działania za pomocą narracji
(0,00 zł najniższa cena z 30 dni)20.90 zł
67.00 zł(-69%) -
To książka przeznaczona dla programistów, którzy chcą zacząć pracę z Gitem i GitHubem. W każdym rozdziale zawarto wyłącznie przydatne informacje, a te uzupełniono licznymi ćwiczeniami. Dzięki temu równocześnie możesz się uczyć Gita i nabierać sprawności w posługiwaniu się tym systemem. Przewodnik...
Git i GitHub. Kontrola wersji, zarządzanie projektami i zasady pracy zespołowej Git i GitHub. Kontrola wersji, zarządzanie projektami i zasady pracy zespołowej
(0,00 zł najniższa cena z 30 dni)44.85 zł
69.00 zł(-35%) -
Dzięki tej książce przekonasz się, jak wspaniałą przygodą jest programowanie i jak łatwo ją zacząć! Poznasz podstawy Pythona, dowiesz się, jak pisać i formatować kod, a także szybko nauczysz się uruchamiać swoje programy. Instrukcje sterujące, operatory, typy danych, funkcje, klasy i moduły nie b...
Python 3. Projekty dla początkujących i pasjonatów Python 3. Projekty dla początkujących i pasjonatów
(0,00 zł najniższa cena z 30 dni)38.94 zł
59.90 zł(-35%)
O autorze książki
1 Wes McKinneyWes McKinney ― twórca oprogramowania open source, autor projektu pandas i współtwórca Apache Arrow. Członek The Apache Software Foundation, a także PMC Apache Parquet. Obecnie pełni funkcję dyrektora technicznego Voltron Data, gdzie zajmuje się przyspieszonymi technologiami obliczeniowymi opartymi na Apache Arrow.
Ebooka przeczytasz na:
-
czytnikach Inkbook, Kindle, Pocketbook i innych
-
systemach Windows, MacOS i innych
-
systemach Windows, Android, iOS, HarmonyOS
-
na dowolnych urządzeniach i aplikacjach obsługujących formaty: PDF, EPub, Mobi
Masz pytania? Zajrzyj do zakładki Pomoc »
Audiobooka posłuchasz:
-
w aplikacji Ebookpoint na Android, iOS, HarmonyOs
-
na systemach Windows, MacOS i innych
-
na dowolonych urządzeniach i aplikacjach obsługujących format MP3 (pliki spakowane w ZIP)
Masz pytania? Zajrzyj do zakładki Pomoc »
Kurs Video zobaczysz:
-
w aplikacji Ebookpoint na Android, iOS, HarmonyOs
-
na systemach Windows, MacOS i innych
-
na dowolonych urządzeniach i aplikacjach obsługujących format MP4 (pliki spakowane w ZIP)
Szczegóły książki
- Tytuł oryginału:
- Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition
- Tłumaczenie:
- Konrad Matuk
- ISBN Książki drukowanej:
- 978-83-283-4081-7, 9788328340817
- Data wydania książki drukowanej:
- 2018-06-15
- ISBN Ebooka:
- 978-83-283-4082-4, 9788328340824
- Data wydania ebooka:
-
2018-06-15
Data wydania ebooka często jest dniem wprowadzenia tytułu do sprzedaży i może nie być równoznaczna z datą wydania książki papierowej. Dodatkowe informacje możesz znaleźć w darmowym fragmencie. Jeśli masz wątpliwości skontaktuj się z nami sklep@helion.pl.
- Format:
- 168x237
- Numer z katalogu:
- 72180
- Rozmiar pliku Pdf:
- 4.7MB
- Rozmiar pliku ePub:
- 6.0MB
- Rozmiar pliku Mobi:
- 13.4MB
- Pobierz przykładowy rozdział PDF
- Przykłady na ftp
Ebook zawiera materiały dodatkowe, które możesz pobrać z serwera FTP - link znajdziesz na stronie redakcyjnej.
- Erraty / Zgłoś erratę
- Kategorie:
Programowanie » Python - Programowanie
Biznes IT » IT w ekonomii
- Serie wydawnicze: O'Reilly
Spis treści książki
- 1.1. O czym jest ta książka? (15)
- Jakie rodzaje danych? (15)
- 1.2. Dlaczego warto korzystać z Pythona w celu przeprowadzenia analizy danych? (16)
- Python jako spoiwo (16)
- Rozwiązywanie problemu "dwujęzyczności" (17)
- Dlaczego nie Python? (17)
- 1.3. Podstawowe biblioteki Pythona (17)
- NumPy (18)
- pandas (18)
- Matplotlib (19)
- IPython i Jupyter (19)
- SciPy (20)
- Scikit-learn (21)
- statsmodels (21)
- 1.4. Instalacja i konfiguracja (22)
- Windows (22)
- Apple (OS X, macOS) (23)
- GNU, Linux (23)
- Instalowanie i aktualizowanie pakietów Pythona (24)
- Python 2 i Python 3 (24)
- Zintegrowane środowiska programistyczne i edytory tekstowe (25)
- 1.5. Społeczność i konferencje (25)
- 1.6. Nawigacja po książce (26)
- Przykłady kodu (27)
- Przykładowe dane (27)
- Konwencje importowania (27)
- Żargon (27)
- 2.1. Interpreter Pythona (30)
- 2.2. Podstawy interpretera IPython (31)
- Uruchamianie powłoki IPython (31)
- Uruchamianie notatnika Jupyter Notebook (32)
- Uzupełnianie poleceń (35)
- Introspekcja (36)
- Polecenie %run (37)
- Wykonywanie kodu ze schowka (39)
- Skróty klawiaturowe działające w terminalu (39)
- Polecenia magiczne (40)
- Integracja pakietu matplotlib (42)
- 2.3. Podstawy Pythona (42)
- Semantyka języka Python (43)
- Skalarne typy danych (50)
- Przepływ sterowania (57)
- 3.1. Struktury danych i sekwencje (61)
- Krotka (61)
- Lista (64)
- Wbudowane funkcje obsługujące sekwencje (68)
- Słownik (70)
- Zbiór (73)
- Lista, słownik i zbiór - składanie (75)
- 3.2. Funkcje (77)
- Przestrzenie nazw, zakres i funkcje lokalne (78)
- Zwracanie wielu wartości (79)
- Funkcje są obiektami (79)
- Funkcje anonimowe (lambda) (81)
- Currying - częściowa aplikacja argumentów (82)
- Generatory (82)
- Błędy i obsługa wyjątków (84)
- 3.3. Pliki i system operacyjny (86)
- Bajty i kodowanie Unicode w plikach (89)
- 3.4. Podsumowanie (91)
- 4.1. NumPy ndarray - wielowymiarowy obiekt tablicowy (95)
- Tworzenie tablic ndarray (96)
- Typ danych tablic ndarray (98)
- Działania matematyczne z tablicami NumPy (100)
- Podstawy indeksowania i przechwytywania części (101)
- Indeksowanie i wartości logiczne (105)
- Indeksowanie specjalne (108)
- Transponowanie tablic i zamiana osi (109)
- 4.2. Funkcje uniwersalne - szybkie funkcje wykonywane na poszczególnych elementach tablicy (110)
- 4.3. Programowanie z użyciem tablic (113)
- Logiczne operacje warunkowe jako operacje tablicowe (115)
- Metody matematyczne i statystyczne (116)
- Metody tablic logicznych (117)
- Sortowanie (118)
- Wartości unikalne i operacje logiczne (119)
- 4.4. Tablice i operacje na plikach (120)
- 4.5. Algebra liniowa (120)
- 4.6. Generowanie liczb pseudolosowych (122)
- 4.7. Przykład: błądzenie losowe (124)
- Jednoczesne symulowanie wielu błądzeń losowych (125)
- 4.8. Podsumowanie (126)
- 5.1. Wprowadzenie do struktur danych biblioteki pandas (127)
- Obiekt Series (128)
- Obiekt DataFrame (131)
- Obiekty index (137)
- 5.2. Podstawowe funkcjonalności (139)
- Uaktualnianie indeksu (139)
- Odrzucanie elementów osi (141)
- Indeksowanie, wybieranie i filtrowanie (143)
- Indeksy w postaci liczb całkowitych (147)
- Działania arytmetyczne i wyrównywanie danych (148)
- Funkcje apply i map (153)
- Sortowanie i tworzenie rankingów (154)
- Indeksy osi ze zduplikowanymi etykietami (157)
- 5.3. Podsumowywanie i generowanie statystyk opisowych (158)
- Współczynnik korelacji i kowariancja (161)
- Unikalne wartości, ich liczba i przynależność (163)
- 5.4. Podsumowanie (165)
- 6.1. Odczyt i zapis danych w formacie tekstowym (167)
- Wczytywanie części pliku tekstowego (173)
- Zapis danych w formacie tekstowym (174)
- Praca z plikami danych rozgraniczonych (176)
- Dane w formacie JSON (178)
- XML i HTML - web scraping (179)
- 6.2. Formaty danych binarnych (182)
- Obsługa formatu HDF5 (183)
- Wczytywanie plików programu Microsoft Excel (185)
- 6.3. Obsługa interfejsów sieciowych (186)
- 6.4. Obsługa baz danych (187)
- 6.5. Podsumowanie (188)
- 7.1. Obsługa brakujących danych (189)
- Filtrowanie brakujących danych (191)
- Wypełnianie brakujących danych (193)
- 7.2. Przekształcanie danych (195)
- Usuwanie duplikatów (195)
- Przekształcanie danych przy użyciu funkcji lub mapowania (196)
- Zastępowanie wartości (197)
- Zmiana nazw indeksów osi (199)
- Dyskretyzacja i podział na koszyki (200)
- Wykrywanie i filtrowanie elementów odstających (202)
- Permutacje i próbkowanie losowe (203)
- Przetwarzanie wskaźników i zmiennych zastępczych (204)
- 7.3. Operacje przeprowadzane na łańcuchach (207)
- Metody obiektu typu string (207)
- Wyrażenia regularne (209)
- Wektoryzacja funkcji łańcuchów w pakiecie pandas (212)
- 7.4. Podsumowanie (215)
- 8.1. Indeksowanie hierarchiczne (217)
- Zmiana kolejności i sortowanie poziomów (220)
- Parametry statystyki opisowej z uwzględnieniem poziomu (220)
- Indeksowanie z kolumnami ramki danych (221)
- 8.2. Łączenie zbiorów danych (222)
- Łączenie ramek danych w stylu łączenia elementów baz danych (222)
- Łączenie przy użyciu indeksu (227)
- Konkatenacja wzdłuż osi (230)
- Łączenie częściowo nakładających się danych (234)
- 8.3. Zmiana kształtu i operacje osiowe (235)
- Przekształcenia z indeksowaniem hierarchicznym (236)
- Przekształcanie z formatu "długiego" na "szeroki" (238)
- Przekształcanie z formatu "szerokiego" na "długi" (241)
- 8.4. Podsumowanie (243)
- 9.1. Podstawy obsługi interfejsu pakietu matplotlib (245)
- Obiekty figure i wykresy składowe (246)
- Kolory, oznaczenia i style linii (250)
- Punkty, etykiety i legendy (252)
- Adnotacje i rysunki (255)
- Zapisywanie wykresów w postaci plików (257)
- Konfiguracja pakietu matplotlib (258)
- 9.2. Generowanie wykresów za pomocą pakietów pandas i seaborn (259)
- Wykresy liniowe (259)
- Wykresy słupkowe (262)
- Histogramy i wykresy gęstości (266)
- Wykresy punktowe (268)
- Wykresy panelowe i dane kategoryczne (269)
- 9.3. Inne narzędzia przeznaczone do wizualizacji danych w Pythonie (272)
- 9.4. Podsumowanie (272)
- 10.1. Mechanika interfejsu groupby (274)
- Iteracja po grupach (277)
- Wybieranie kolumny lub podzbioru kolumn (278)
- Grupowanie przy użyciu słowników i serii (279)
- Grupowanie przy użyciu funkcji (280)
- Grupowanie przy użyciu poziomów indeksu (280)
- 10.2. Agregacja danych (281)
- Przetwarzanie kolumna po kolumnie i stosowanie wielu funkcji (282)
- Zwracanie zagregowanych danych bez indeksów wierszy (285)
- 10.3. Metoda apply - ogólne zastosowanie techniki dziel-zastosuj-połącz (286)
- Usuwanie kluczy grup (288)
- Kwantyle i analiza koszykowa (288)
- Przykład: wypełnianie brakujących wartości przy użyciu wartości charakterystycznych dla grupy (290)
- Przykład: losowe generowanie próbek i permutacja (292)
- Przykład: średnie ważone grup i współczynnik korelacji (293)
- Przykład: regresja liniowa grup (295)
- 10.4. Tabele przestawne i krzyżowe (295)
- Tabele krzyżowe (298)
- 10.5. Podsumowanie (299)
- 11.1. Typy danych i narzędzia przeznaczone do obsługi daty i czasu (302)
- Konwersja pomiędzy obiektami string i datetime (303)
- 11.2. Podstawy szeregów czasowych (305)
- Indeksowanie i wybieranie (306)
- Szeregi czasowe z duplikatami indeksów (309)
- 11.3. Zakresy dat, częstotliwości i przesunięcia (310)
- Generowanie zakresów dat (310)
- Częstotliwości i przesunięcia daty (313)
- Przesuwanie daty (314)
- 11.4. Obsługa strefy czasowej (317)
- Lokalizacja i konwersja stref czasowych (317)
- Operacje z udziałem obiektów Timestamp o wyznaczonej strefie czasowej (319)
- Operacje pomiędzy różnymi strefami czasowymi (320)
- 11.5. Okresy i przeprowadzanie na nich operacji matematycznych (321)
- Konwersja częstotliwości łańcuchów (322)
- Kwartalne częstotliwości okresów (323)
- Konwersja znaczników czasu na okresy (i z powrotem) (325)
- Tworzenie obiektów PeriodIndex na podstawie tablic (326)
- 11.6. Zmiana rozdzielczości i konwersja częstotliwości (328)
- Zmniejszanie częstotliwości (329)
- Zwiększanie rozdzielczości i interpolacja (332)
- Zmiana rozdzielczości z okresami (333)
- 11.7. Funkcje ruchomego okna (334)
- Funkcje ważone wykładniczo (337)
- Binarne funkcje ruchomego okna (338)
- Funkcje ruchomego okna definiowane przez użytkownika (340)
- 11.8. Podsumowanie (340)
- 12.1. Dane kategoryczne (341)
- Kontekst i motywacja (341)
- Typ Categorical w bibliotece pandas (343)
- Obliczenia na obiektach typu Categorical (345)
- Metody obiektu kategorycznego (347)
- 12.2. Zaawansowane operacje grupowania (349)
- Transformacje grup i "nieobudowane" operacje grupowania (349)
- Zmiana rozdzielczości czasu przeprowadzana przy użyciu grup (353)
- 12.3. Techniki łączenia metod w łańcuch (354)
- Metoda pipe (355)
- 12.4. Podsumowanie (356)
- 13.1. Łączenie pandas z kodem modelu (357)
- 13.2. Tworzenie opisów modeli przy użyciu biblioteki Patsy (360)
- Przekształcenia danych za pomocą formuł Patsy (362)
- Patsy i dane kategoryczne (363)
- 13.3. Wprowadzenie do biblioteki statsmodels (366)
- Szacowanie modeli liniowych (366)
- Szacowanie procesów szeregów czasowych (369)
- 13.4. Wprowadzenie do pakietu scikit-learn (369)
- 13.5. Dalszy rozwój (373)
- 14.1. Dane USA.gov serwisu Bitly (375)
- Liczenie stref czasowych w czystym Pythonie (376)
- Liczenie stref czasowych przy użyciu pakietu pandas (378)
- 14.2. Zbiór danych MovieLens 1M (384)
- Wyznaczenie rozbieżności ocen (388)
- 14.3. Imiona nadawane dzieciom w USA w latach 1880 - 2010 (389)
- Analiza trendów imion (394)
- 14.4. Baza danych USDA Food (402)
- 14.5. Baza danych 2012 Federal Election Commission (406)
- Statystyki datków z podziałem na wykonywany zawód i pracodawcę (409)
- Podział kwot datków na koszyki (411)
- Statystyki datków z podziałem na poszczególne stany (413)
- 14.6. Podsumowanie (414)
- A.1. Szczegóły budowy obiektu ndarray (415)
- Hierarchia typów danych NumPy (416)
- A.2. Zaawansowane operacje tablicowe (417)
- Zmiana wymiarów tablic (417)
- Kolejności charakterystyczne dla języków C i Fortran (419)
- Łączenie i dzielenie tablic (420)
- Powtarzanie elementów - funkcje tile i repeat (422)
- Alternatywy indeksowania specjalnego - metody take i put (423)
- A.3. Rozgłaszanie (424)
- Rozgłaszanie wzdłuż innych osi (426)
- Przypisywanie wartości elementom tablicy poprzez rozgłaszanie (428)
- A.4. Zaawansowane zastosowania funkcji uniwersalnych (429)
- Metody instancji funkcji uniwersalnych (429)
- Pisanie nowych funkcji uniwersalnych w Pythonie (431)
- A.5. Tablice o złożonej strukturze (432)
- Zagnieżdżone typy danych i pola wielowymiarowe (433)
- Do czego przydają się tablice o złożonej strukturze? (434)
- A.6. Jeszcze coś o sortowaniu (434)
- Sortowanie pośrednie - metody argsort i lexsort (435)
- Alternatywne algorytmy sortowania (436)
- Częściowe sortowanie tablic (437)
- Wyszukiwanie elementów w posortowanej tablicy za pomocą metody numpy.searchsorted (438)
- A.7. Pisanie szybkich funkcji NumPy za pomocą pakietu Numba (439)
- Tworzenie obiektów numpy.ufunc za pomocą pakietu Numba (440)
- A.8. Zaawansowane tablicowe operacje wejścia i wyjścia (441)
- Pliki mapowane w pamięci (441)
- HDF5 i inne możliwości zapisu tablic (442)
- A.9. Jak zachować wysoką wydajność? (442)
- Dlaczego warto korzystać z sąsiadujących ze sobą obszarów pamięci? (443)
- B.1. Korzystanie z historii poleceń (445)
- Przeszukiwanie i korzystanie z historii poleceń (445)
- Zmienne wejściowe i wyjściowe (446)
- B.2. Interakcja z systemem operacyjnym (447)
- Polecenia powłoki systemowej i aliasy (447)
- System tworzenia skrótów do katalogów (448)
- B.3. Narzędzia programistyczne (449)
- Interaktywny debuger (449)
- Pomiar czasu - funkcje %time i %timeit (453)
- Podstawowe profilowanie - funkcje %prun i %run-p (455)
- Profilowanie funkcji linia po linii (457)
- B.4. Wskazówki dotyczące produktywnego tworzenia kodu w środowisku IPython (458)
- Przeładowywanie modułów (459)
- Wskazówki dotyczące projektowania kodu (460)
- B.5. Zaawansowane funkcje środowiska IPython (461)
- Co zrobić, aby własne klasy były przyjazne dla systemu IPython? (461)
- Profile i konfiguracja (462)
Przedmowa (11)
1. Wstęp (15)
2. Podstawy Pythona oraz obsługi narzędzi IPython i Jupyter (29)
3. Wbudowane struktury danych, funkcje i pliki (61)
4. Podstawy biblioteki NumPy: obsługa tablic i wektorów (93)
5. Rozpoczynamy pracę z biblioteką pandas (127)
6. Odczyt i zapis danych, formaty plików (167)
7. Czyszczenie i przygotowywanie danych (189)
8. Przetwarzanie danych - operacje łączenia, wiązania i przekształcania (217)
9. Wykresy i wizualizacja danych (245)
10. Agregacja danych i operacje wykonywane na grupach (273)
11. Szeregi czasowe (301)
12. Zaawansowane funkcje biblioteki pandas (341)
13. Wprowadzenie do bibliotek modelujących (357)
14. Przykłady analizy danych (375)
A. Zaawansowane zagadnienia związane z biblioteką NumPy (415)
B. Dodatkowe informacje dotyczące systemu IPython (445)
Skorowidz (465)
Helion - inne książki
-
W tej książce omówiono techniki wdrażania systemów na platformie AWS i zasady zarządzania nimi. Zaprezentowano podstawy korzystania z usługi Identity and Access Management oraz narzędzia sieciowe i monitorujące chmury AWS. Poruszono tematy Virtual Private Cloud, Elastic Compute Cloud, równoważeni...
AWS dla administratorów systemów. Tworzenie i utrzymywanie niezawodnych aplikacji chmurowych AWS dla administratorów systemów. Tworzenie i utrzymywanie niezawodnych aplikacji chmurowych
(0,00 zł najniższa cena z 30 dni)51.35 zł
79.00 zł(-35%) -
Ta książka jest przeznaczona dla osób, które chcą zrozumieć działanie Lightning Network i wykorzystać możliwości tej technologii we własnych aplikacjach. Z lektury tej pozycji skorzystają programiści, architekci systemowi i inżynierowie. Omówiono w niej podstawy funkcjonowania sieci LN i sposoby ...
Lightning Network dla praktyków. Protokół drugiej warstwy i jego wykorzystanie do obsługi płatności bitcoinami Lightning Network dla praktyków. Protokół drugiej warstwy i jego wykorzystanie do obsługi płatności bitcoinami
(0,00 zł najniższa cena z 30 dni)77.35 zł
119.00 zł(-35%) -
Nie trzeba siedzieć po uszy w programowaniu, by zauważyć pewną regułę: lwia część książek poświęconych temu zagadnieniu została napisana w podobny sposób. I nie chodzi o styl, środowisko czy język, lecz o strukturę. Prawidłowość tę zauważył Łukasz Sosna, który do zagadnienia programowania w język...
Visual Studio 2022, C# i .NET. Programowanie kontrolek Visual Studio 2022, C# i .NET. Programowanie kontrolek
(0,00 zł najniższa cena z 30 dni)32.44 zł
49.90 zł(-35%) -
IT przeżywa rozkwit, czego dowodem jest to, że w pierwszym półroczu 2022 roku 25 procent ogłoszeń o pracy było skierowanych właśnie do przedstawicieli tej branży. Na ten imponujący wynik składają się oferty dla specjalistów do spraw rozwoju oprogramowania (16 procent wszystkich ogłoszeń). Nic wię...
Ścieżka testera. Certyfikat ISTQB w pytaniach i odpowiedziach Ścieżka testera. Certyfikat ISTQB w pytaniach i odpowiedziach
(0,00 zł najniższa cena z 30 dni)44.85 zł
69.00 zł(-35%) -
Dzięki tej książce nauczysz się programować w języku VBA. Dowiesz się także, w jaki sposób można zautomatyzować wiele żmudnych czynności wykonywanych w Excelu i w innych aplikacjach pakietu MS Office. Naukę rozpoczniesz od podstaw, które podano tu w przystępnej i zrozumiałej formie. Dowiesz się, ...
Automatyzacja w VBA dla Excela 2019. Receptury. Jak przyspieszać rutynowe zadania i zwiększać efektywność pracy Automatyzacja w VBA dla Excela 2019. Receptury. Jak przyspieszać rutynowe zadania i zwiększać efektywność pracy
(0,00 zł najniższa cena z 30 dni)51.35 zł
79.00 zł(-35%) -
Oto pierwszy tom dzieła, które stanowi inspirujące spojrzenie na sztuczną inteligencję. Jego zrozumienie nie wymaga wybitnej znajomości informatyki i matematyki. Książka jest wspaniałą syntezą wczesnych i późniejszych koncepcji, a także technik, przeprowadzoną we frameworku idei, metod i technolo...
Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 1 Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 1
(0,00 zł najniższa cena z 30 dni)109.85 zł
169.00 zł(-35%) -
Ta książka jest znakomitym wprowadzeniem do Power BI. Dzięki niej nauczysz się modelowania danych, technik definiowania relacji oraz tworzenia modeli danych. Dowiesz się też, jak prowadzić obliczenia za pomocą funkcji modelowania. Poznasz także podstawy pisania kodu w języku DAX i korzystania z n...
Modelowanie danych z Power BI dla ekspertów analityki. Jak w pełni wykorzystać możliwości Power BI Modelowanie danych z Power BI dla ekspertów analityki. Jak w pełni wykorzystać możliwości Power BI
(0,00 zł najniższa cena z 30 dni)77.35 zł
119.00 zł(-35%) -
To drugi tom klasycznego podręcznika wiedzy o sztucznej inteligencji. Podobnie jak w wypadku pierwszej części, lektura tej książki nie wymaga wybitnej znajomości tematu. Dzięki przejrzystości tekstu i umiejętnemu unikaniu nadmiernego formalizmu można w dość łatwy sposób zrozumieć kluczowe idee i ...
Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 2 Sztuczna inteligencja. Nowe spojrzenie. Wydanie IV. Tom 2
(0,00 zł najniższa cena z 30 dni)83.85 zł
129.00 zł(-35%) -
Ta książka powinna zostać przestudiowana przez każdego architekta nowoczesnych systemów rozproszonych. Jej celem jest pokazanie sposobów rozwiązywania trudnych problemów związanych z projektowaniem takiego oprogramowania. W krytyczny i wszechstronny sposób omówiono w niej najważniejsze problemy u...
Złożone zagadnienia architektury oprogramowania. Jak analizować kompromisy i podejmować trudne decyzje Złożone zagadnienia architektury oprogramowania. Jak analizować kompromisy i podejmować trudne decyzje
(0,00 zł najniższa cena z 30 dni)64.35 zł
99.00 zł(-35%) -
Autor tego zbioru zadań jest programistą i nauczycielem. To prawdziwy pasjonat programowania ― w tym w języku C++ ― które traktuje jak przedłużenie ludzkiej mowy. Uważa, że praktycznie na wszystko, co robimy w życiu, można spojrzeć jak na wykonywanie funkcji i algorytmów, które opisuj...(0,00 zł najniższa cena z 30 dni)
22.20 zł
37.00 zł(-40%)
Dzieki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
W przypadku usługi "Druk na żądanie" termin dostarczenia przesyłki może obejmować także czas potrzebny na dodruk (do 10 dni roboczych)
Masz pytanie o konkretny tytuł? Napisz do nas: sklep[at]helion.pl.
Książka, którą chcesz zamówić pochodzi z końcówki nakładu. Oznacza to, że mogą się pojawić drobne defekty (otarcia, rysy, zagięcia).
Co powinieneś wiedzieć o usłudze "Końcówka nakładu":
- usługa obejmuje tylko książki oznaczone tagiem "Końcówka nakładu";
- wady o których mowa powyżej nie podlegają reklamacji;
Masz pytanie o konkretny tytuł? Napisz do nas: sklep[at]helion.pl.


Oceny i opinie klientów: Python w analizie danych. Przetwarzanie danych za pomocą pakietów Pandas i NumPy oraz środowiska IPython. Wydanie II Wes McKinney (3)
Weryfikacja opinii następuję na podstawie historii zamówień na koncie Użytkownika umieszczającego opinię. Użytkownik mógł otrzymać punkty za opublikowanie opinii uprawniające do uzyskania rabatu w ramach Programu Punktowego.
(2)
(1)
(0)
(0)
(0)
(0)
Data dodania: 2022-08-18 Ocena: 6 Opinia niepotwierdzona zakupem
Krzysztof,
Data dodania: 2019-02-16 Ocena: 6 Opinia potwierdzona zakupem
Data dodania: 2018-10-28 Ocena: 5 Opinia potwierdzona zakupem
więcej opinii