×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Modern Computer Vision with PyTorch. Explore deep learning concepts and implement over 50 real-world image applications V Kishore Ayyadevara, Yeshwanth Reddy

(ebook) (audiobook) (audiobook) Książka w języku 1
Modern Computer Vision with PyTorch. Explore deep learning concepts and implement over 50 real-world image applications V Kishore Ayyadevara, Yeshwanth Reddy - okladka książki

Modern Computer Vision with PyTorch. Explore deep learning concepts and implement over 50 real-world image applications V Kishore Ayyadevara, Yeshwanth Reddy - okladka książki

Modern Computer Vision with PyTorch. Explore deep learning concepts and implement over 50 real-world image applications V Kishore Ayyadevara, Yeshwanth Reddy - audiobook MP3

Modern Computer Vision with PyTorch. Explore deep learning concepts and implement over 50 real-world image applications V Kishore Ayyadevara, Yeshwanth Reddy - audiobook CD

Autorzy:
V Kishore Ayyadevara, Yeshwanth Reddy
Ocena:
3.0/6  Opinie: 1
Stron:
824
Dostępne formaty:
     PDF
     ePub
     Mobi
Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets.
You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud.
By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently.

Wybrane bestsellery

O autorach książki

V Kishore Ayyadevara leads a team focused on using AI to solve problems in the healthcare space. He has 10 years' experience in data science, solving problems to improve customer experience in leading technology companies. In his current role, he is responsible for developing a variety of cutting edge analytical solutions that have an impact at scale while building strong technical teams. Prior to this, Kishore authored three books — Pro Machine Learning Algorithms, Hands-on Machine Learning with Google Cloud Platform, and SciPy Recipes. Kishore is an active learner with keen interest in identifying problems that can be solved using data, simplifying the complexity and in transferring techniques across domains to achieve quantifiable results.
Yeshwanth Reddy is a data scientist with prior teaching experience in INSOFE. He has completed his M.Tech and B.Tech from IIT Madras.

V Kishore Ayyadevara, Yeshwanth Reddy - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
161,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.