×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Mastering Python for Finance. Implement advanced state-of-the-art financial statistical applications using Python - Second Edition James Ma Weiming

(ebook) (audiobook) (audiobook) Książka w języku 1
Mastering Python for Finance. Implement advanced state-of-the-art financial statistical applications using Python - Second Edition James Ma Weiming - okladka książki

Mastering Python for Finance. Implement advanced state-of-the-art financial statistical applications using Python - Second Edition James Ma Weiming - okladka książki

Mastering Python for Finance. Implement advanced state-of-the-art financial statistical applications using Python - Second Edition James Ma Weiming - audiobook MP3

Mastering Python for Finance. Implement advanced state-of-the-art financial statistical applications using Python - Second Edition James Ma Weiming - audiobook CD

Autor:
James Ma Weiming
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
426
Dostępne formaty:
     PDF
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
The second edition of Mastering Python for Finance will guide you through carrying out complex financial calculations practiced in the industry of finance by using next-generation methodologies. You will master the Python ecosystem by leveraging publicly available tools to successfully perform research studies and modeling, and learn to manage risks with the help of advanced examples.

You will start by setting up your Jupyter notebook to implement the tasks throughout the book. You will learn to make efficient and powerful data-driven financial decisions using popular libraries such as TensorFlow, Keras, Numpy, SciPy, and scikit-learn. You will also learn how to build financial applications by mastering concepts such as stocks, options, interest rates and their derivatives, and risk analytics using computational methods. With these foundations, you will learn to apply statistical analysis to time series data, and understand how time series data is useful for implementing an event-driven backtesting system and for working with high-frequency data in building an algorithmic trading platform. Finally, you will explore machine learning and deep learning techniques that are applied in finance.

By the end of this book, you will be able to apply Python to different paradigms in the financial industry and perform efficient data analysis.

Wybrane bestsellery

O autorze książki

James Ma Weiming is a software engineer based in Singapore. His studies and research are focused on financial technology, machine learning, data sciences, and computational finance. James started his career in financial services working with treasury fixed income and foreign exchange products, and fund distribution. His interests in derivatives led him to Chicago, where he worked with veteran traders of the Chicago Board of Trade to devise high-frequency, low-latency strategies to game the market. He holds an MS degree in finance from Illinois Tech's Stuart School of Business in the United States and a bachelor's degree in computer engineering from Nanyang Technological University.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.