ODBIERZ TWÓJ BONUS :: »

Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III

(ebook) (audiobook) (audiobook)
Autor:
Yuxi (Hayden) Liu
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
5.0/6  Opinie: 1
Stron:
424
Druk:
oprawa miękka
3w1 w pakiecie:
     PDF
     ePub
     Mobi

Książka

99,00 zł (-35%)
64,35 zł

Dodaj do koszyka Wysyłamy w 24h

Ebook

99,00 zł (-50%)
49,50 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Czytaj fragment

Systemy oparte na uczeniu maszynowym są coraz bardziej wyrafinowane. Spośród wielu narzędzi służących do implementacji algorytmów uczenia maszynowego najpopularniejszy okazał się Python wraz z jego bibliotekami. Znajomość tych narzędzi umożliwia sprawne tworzenie systemów uczących się, jednak uzyskanie spektakularnych wyników wymaga doświadczenia i wprawy. Konieczne są więc ćwiczenia i praktyka w samodzielnym rozwiązywaniu problemów.

To trzecie wydanie popularnego podręcznika, który ułatwi Ci zdobycie praktycznej wiedzy o uczeniu maszynowym w Pythonie. Zapoznasz się z różnymi technikami implementacji algorytmów uczenia maszynowego. Przeanalizujesz rzeczywiste przykłady techniki eksploracyjnej analizy danych, inżynierii cech, klasyfikacji danych, regresji, klastrowania i przetwarzania języka naturalnego. To wydanie uzupełniono o najnowsze zagadnienia ważne dla biznesu, takie jak tworzenie systemu rekomendacji, rozpoznawanie twarzy, prognozowanie cen akcji, klasyfikowanie zdjęć, prognozowanie sekwencji danych i zastosowanie uczenia przez wzmacnianie w podejmowaniu decyzji. Dzięki książce poznasz omawiane zagadnienia od strony praktycznej i zdobędziesz wiedzę potrzebną do skutecznego rozwiązywania problemów z systemami uczącymi się.

W książce między innymi:

  • gruntowne podstawy uczenia maszynowego i nauki o danych
  • techniki eksploracji i analizy danych za pomocą kodu Pythona
  • trenowanie modeli za pomocą Apache Spark
  • przetwarzanie języka naturalnego przy użyciu bibliotek Pythona
  • praktyczne wdrażanie modeli i algorytmów uczenia maszynowego
  • korzystanie z bibliotek Pythona: TensorFlow 2, PyTorch i scikit-learn

Wypróbuj najlepsze praktyki uczenia maszynowego z Pythonem!

O autorze książki

1 Yuxi (Hayden) Liu

Yuxi (Hayden) Liu rozwija modele uczenia maszynowego w Google. Wcześniej pracował naukowo nad zastosowaniami uczenia maszynowego w takich dziedzinach jak reklama internetowa i cyberbezpieczeństwo. Jest entuzjastą edukacji i autorem wielu książek o uczeniu maszynowym. Pierwsze wydanie tego podręcznika zajmowało wiodącą pozycję w rankingu Amazona w latach 2017 i 2018.

Zamknij

Wybierz metodę płatności