×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Mastering Numerical Computing with NumPy. Master scientific computing and perform complex operations with ease Umit Mert Cakmak, Mert Cuhadaroglu

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Mastering Numerical Computing with NumPy. Master scientific computing and perform complex operations with ease Umit Mert Cakmak, Mert Cuhadaroglu - okladka książki

Mastering Numerical Computing with NumPy. Master scientific computing and perform complex operations with ease Umit Mert Cakmak, Mert Cuhadaroglu - okladka książki

Mastering Numerical Computing with NumPy. Master scientific computing and perform complex operations with ease Umit Mert Cakmak, Mert Cuhadaroglu - audiobook MP3

Mastering Numerical Computing with NumPy. Master scientific computing and perform complex operations with ease Umit Mert Cakmak, Mert Cuhadaroglu - audiobook CD

Autorzy:
Umit Mert Cakmak, Mert Cuhadaroglu
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
248
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (98,10 zł najniższa cena z 30 dni)

109,00 zł (-10%)
98,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(98,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

NumPy is one of the most important scientific computing libraries available for Python. Mastering Numerical Computing with NumPy teaches you how to achieve expert level competency to perform complex operations, with in-depth coverage of advanced concepts.

Beginning with NumPy's arrays and functions, you will familiarize yourself with linear algebra concepts to perform vector and matrix math operations. You will thoroughly understand and practice data processing, exploratory data analysis (EDA), and predictive modeling. You will then move on to working on practical examples which will teach you how to use NumPy statistics in order to explore US housing data and develop a predictive model using simple and multiple linear regression techniques. Once you have got to grips with the basics, you will explore unsupervised learning and clustering algorithms, followed by understanding how to write better NumPy code while keeping advanced considerations in mind. The book also demonstrates the use of different high-performance numerical computing libraries and their relationship with NumPy. You will study how to benchmark the performance of different configurations and choose the best for your system.

By the end of this book, you will have become an expert in handling and performing complex data manipulations.

Wybrane bestsellery

O autorach książki

Umit Mert Cakmak is a data scientist at IBM, where he excels at helping clients solve complex data science problems, from inception to delivery of deployable assets. His research spans multiple disciplines beyond his industry and he likes sharing his insights at conferences, universities, and meet-ups.
Mert Cuhadaroglu is a BI Developer in EPAM, developing E2E analytics solutions for complex business problems in various industries, mostly investment banking, FMCG, media, communication, and pharma. He consistently uses advanced statistical models and ML algorithms to provide actionable insights. Throughout his career, he has worked in several other industries, such as banking and asset management. He continues his academic research in AI for trading algorithms.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
98,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.