×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning Infrastructure and Best Practices for Software Engineers. Take your machine learning software from a prototype to a fully fledged software system Miroslaw Staron

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning Infrastructure and Best Practices for Software Engineers. Take your machine learning software from a prototype to a fully fledged software system Miroslaw Staron - okladka książki

Machine Learning Infrastructure and Best Practices for Software Engineers. Take your machine learning software from a prototype to a fully fledged software system Miroslaw Staron - okladka książki

Machine Learning Infrastructure and Best Practices for Software Engineers. Take your machine learning software from a prototype to a fully fledged software system Miroslaw Staron - audiobook MP3

Machine Learning Infrastructure and Best Practices for Software Engineers. Take your machine learning software from a prototype to a fully fledged software system Miroslaw Staron - audiobook CD

Autor:
Miroslaw Staron
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
346
Dostępne formaty:
     PDF
     ePub
Although creating a machine learning pipeline or developing a working prototype of a software system from that pipeline is easy and straightforward nowadays, the journey toward a professional software system is still extensive. This book will help you get to grips with various best practices and recipes that will help software engineers transform prototype pipelines into complete software products.
The book begins by introducing the main concepts of professional software systems that leverage machine learning at their core. As you progress, you’ll explore the differences between traditional, non-ML software, and machine learning software. The initial best practices will guide you in determining the type of software you need for your product. Subsequently, you will delve into algorithms, covering their selection, development, and testing before exploring the intricacies of the infrastructure for machine learning systems by defining best practices for identifying the right data source and ensuring its quality.
Towards the end, you’ll address the most challenging aspect of large-scale machine learning systems – ethics. By exploring and defining best practices for assessing ethical risks and strategies for mitigation, you will conclude the book where it all began – large-scale machine learning software.

Wybrane bestsellery

O autorze książki

Miroslaw Staron is a professor of Applied IT at the University of Gothenburg in Sweden with a focus on empirical software engineering, measurement, and machine learning. He is currently editor-in-chief of Information and Software Technology and co-editor of the regular Practitioner's Digest column of IEEE Software. He has authored books on automotive software architectures, software measurement, and action research. He also leads several projects in AI for software engineering and leads an AI and digitalization theme at Software Center. He has written over 200 journal and conference articles.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
116,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.