×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Keras 2.x Projects. 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras Giuseppe Ciaburro

(ebook) (audiobook) (audiobook) Książka w języku 1
Keras 2.x Projects. 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras Giuseppe Ciaburro - okladka książki

Keras 2.x Projects. 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras Giuseppe Ciaburro - okladka książki

Keras 2.x Projects. 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras Giuseppe Ciaburro - audiobook MP3

Keras 2.x Projects. 9 projects demonstrating faster experimentation of neural network and deep learning applications using Keras Giuseppe Ciaburro - audiobook CD

Autor:
Giuseppe Ciaburro
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
394
Dostępne formaty:
     PDF
     ePub
     Mobi
Keras 2.x Projects explains how to leverage the power of Keras to build and train state-of-the-art deep learning models through a series of practical projects that look at a range of real-world application areas.

To begin with, you will quickly set up a deep learning environment by installing the Keras library. Through each of the projects, you will explore and learn the advanced concepts of deep learning and will learn how to compute and run your deep learning models using the advanced offerings of Keras. You will train fully-connected multilayer networks, convolutional neural networks, recurrent neural networks, autoencoders and generative adversarial networks using real-world training datasets. The projects you will undertake are all based on real-world scenarios of all complexity levels, covering topics such as language recognition, stock volatility, energy consumption prediction, faster object classification for self-driving vehicles, and more.

By the end of this book, you will be well versed with deep learning and its implementation with Keras. You will have all the knowledge you need to train your own deep learning models to solve different kinds of problems.

Wybrane bestsellery

O autorze książki

Giuseppe Ciaburro holds a PhD in environmental technical physics, along with two master's degrees holds a master's degree in chemical engineering from Università degli Studi di Napoli Federico II, and a master's degreeand in acoustic and noise control from Seconda Università degli Studi di Napoli. He works at the Built Environment Control Laboratory - Università degli Studi della Campania "Luigi Vanvitelli".He has over 15 20 years of work experience in programming, first in the field of combustion and then in acoustics and noise control. His core programming knowledge is in Python and R, and he has extensive experience of working with MATLAB. An expert in acoustics and noise control, Giuseppe has wide experience in teaching professional computer ITC courses (about 15 20 years), dealing with e-learning as an author. He has several publications to his credit: monographs, scientific journals, and thematic conferences. He is currently researching machine learning applications in acoustics and noise control. He was recently included in the world's top 2% scientists list by Stanford University.

Giuseppe Ciaburro - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.