×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Neuroevolution with Python. Build high-performing artificial neural network architectures using neuroevolution-based algorithms Iaroslav Omelianenko

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Hands-On Neuroevolution with Python. Build high-performing artificial neural network architectures using neuroevolution-based algorithms Iaroslav Omelianenko - okladka książki

Hands-On Neuroevolution with Python. Build high-performing artificial neural network architectures using neuroevolution-based algorithms Iaroslav Omelianenko - okladka książki

Hands-On Neuroevolution with Python. Build high-performing artificial neural network architectures using neuroevolution-based algorithms Iaroslav Omelianenko - audiobook MP3

Hands-On Neuroevolution with Python. Build high-performing artificial neural network architectures using neuroevolution-based algorithms Iaroslav Omelianenko - audiobook CD

Autor:
Iaroslav Omelianenko
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
368
Dostępne formaty:
     PDF
     ePub
     Mobi
Neuroevolution is a form of artificial intelligence learning that uses evolutionary algorithms to simplify the process of solving complex tasks in domains such as games, robotics, and the simulation of natural processes. This book will give you comprehensive insights into essential neuroevolution concepts and equip you with the skills you need to apply neuroevolution-based algorithms to solve practical, real-world problems.
You'll start with learning the key neuroevolution concepts and methods by writing code with Python. You'll also get hands-on experience with popular Python libraries and cover examples of classical reinforcement learning, path planning for autonomous agents, and developing agents to autonomously play Atari games. Next, you'll learn to solve common and not-so-common challenges in natural computing using neuroevolution-based algorithms. Later, you'll understand how to apply neuroevolution strategies to existing neural network designs to improve training and inference performance. Finally, you'll gain clear insights into the topology of neural networks and how neuroevolution allows you to develop complex networks, starting with simple ones.
By the end of this book, you will not only have explored existing neuroevolution-based algorithms, but also have the skills you need to apply them in your research and work assignments.

Wybrane bestsellery

O autorze książki

Iaroslav Omelianenko occupied the position of CTO and research director for more than a decade. He is an active member of the research community and has published several research papers at arXiv, ResearchGate, Preprints, and more. He started working with applied machine learning by developing autonomous agents for mobile games more than a decade ago. For the last 5 years, he has actively participated in research related to applying deep machine learning methods for authentication, personal traits recognition, cooperative robotics, synthetic intelligence, and more. He is an active software developer and creates open source neuroevolution algorithm implementations in the Go language.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.