×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Google Machine Learning and Generative AI for Solutions Architects. ​Build efficient and scalable AI/ML solutions on Google Cloud

(ebook) (audiobook) (audiobook) Książka w języku 1
Google Machine Learning and Generative AI for Solutions Architects. ​Build efficient and scalable AI/ML solutions on Google Cloud Kieran Kavanagh, Priyanka Vergadia - okladka książki

Google Machine Learning and Generative AI for Solutions Architects. ​Build efficient and scalable AI/ML solutions on Google Cloud Kieran Kavanagh, Priyanka Vergadia - okladka książki

Google Machine Learning and Generative AI for Solutions Architects. ​Build efficient and scalable AI/ML solutions on Google Cloud Kieran Kavanagh, Priyanka Vergadia - audiobook MP3

Google Machine Learning and Generative AI for Solutions Architects. ​Build efficient and scalable AI/ML solutions on Google Cloud Kieran Kavanagh, Priyanka Vergadia - audiobook CD

Serie wydawnicze:
Learning
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
552
Dostępne formaty:
     PDF
     ePub

Ebook (29,90 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Most companies today are incorporating AI/ML into their businesses. Building and running apps utilizing AI/ML effectively is tough. This book, authored by a principal architect with about two decades of industry experience, who has led cross-functional teams to design, plan, implement, and govern enterprise cloud strategies, shows you exactly how to design and run AI/ML workloads successfully using years of experience from some of the world’s leading tech companies.
You’ll get a clear understanding of essential fundamental AI/ML concepts, before moving on to complex topics with the help of examples and hands-on activities. This will help you explore advanced, cutting-edge AI/ML applications that address real-world use cases in today’s market. You’ll recognize the common challenges that companies face when implementing AI/ML workloads, and discover industry-proven best practices to overcome these. The chapters also teach you about the vast AI/ML landscape on Google Cloud and how to implement all the steps needed in a typical AI/ML project. You’ll use services such as BigQuery to prepare data; Vertex AI to train, deploy, monitor, and scale models in production; as well as MLOps to automate the entire process.
By the end of this book, you will be able to unlock the full potential of Google Cloud's AI/ML offerings.

Wybrane bestsellery

O autorze książki

​Kieran Kavanagh is a Principal Architect at Google. He works with large enterprises to guide them on architecting solutions to meet their business needs on Google Cloud. Having spent over a decade and a half working as a Solutions Architect at some of the world's largest technology companies, such as Amazon, AT&T, Ericsson, and Google, he has amassed a wealth of knowledge in architecting extremely large-scale and highly complex technology solutions. He has presented on these topics at more than 100 technology conferences all over the world. Prior to joining Google, he was a Principal AI/ML Solutions Architect in Strategic Accounts at AWS, working with AWS' largest customers to design and build cutting-edge and global-scale AI/ML solutions. He has a passion for AI/ML, and for teaching and helping others to grow their careers in this industry. ​Originally from Cork, Ireland, Kieran has lived and worked in many countries around the world, and he now resides in Atlanta, GA.

Zobacz pozostałe książki z serii Learning

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint