×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Ensemble Machine Learning Cookbook. Over 35 practical recipes to explore ensemble machine learning techniques using Python

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Ensemble Machine Learning Cookbook. Over 35 practical recipes to explore ensemble machine learning techniques using Python Dipayan Sarkar, Vijayalakshmi Natarajan - okladka książki

Ensemble Machine Learning Cookbook. Over 35 practical recipes to explore ensemble machine learning techniques using Python Dipayan Sarkar, Vijayalakshmi Natarajan - okladka książki

Ensemble Machine Learning Cookbook. Over 35 practical recipes to explore ensemble machine learning techniques using Python Dipayan Sarkar, Vijayalakshmi Natarajan - audiobook MP3

Ensemble Machine Learning Cookbook. Over 35 practical recipes to explore ensemble machine learning techniques using Python Dipayan Sarkar, Vijayalakshmi Natarajan - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
336
Dostępne formaty:
     PDF
     ePub
     Mobi
Ensemble modeling is an approach used to improve the performance of machine learning models. It combines two or more similar or dissimilar machine learning algorithms to deliver superior intellectual powers. This book will help you to implement popular machine learning algorithms to cover different paradigms of ensemble machine learning such as boosting, bagging, and stacking.

The Ensemble Machine Learning Cookbook will start by getting you acquainted with the basics of ensemble techniques and exploratory data analysis. You'll then learn to implement tasks related to statistical and machine learning algorithms to understand the ensemble of multiple heterogeneous algorithms. It will also ensure that you don't miss out on key topics, such as like resampling methods. As you progress, you’ll get a better understanding of bagging, boosting, stacking, and working with the Random Forest algorithm using real-world examples. The book will highlight how these ensemble methods use multiple models to improve machine learning results, as compared to a single model. In the concluding chapters, you'll delve into advanced ensemble models using neural networks, natural language processing, and more. You’ll also be able to implement models such as fraud detection, text categorization, and sentiment analysis.

By the end of this book, you'll be able to harness ensemble techniques and the working mechanisms of machine learning algorithms to build intelligent models using individual recipes.

Wybrane bestsellery

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności