×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Distributed Machine Learning with Python. Accelerating model training and serving with distributed systems

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Autor:
Guanhua Wang
Distributed Machine Learning with Python. Accelerating model training and serving with distributed systems Guanhua Wang - okladka książki

Distributed Machine Learning with Python. Accelerating model training and serving with distributed systems Guanhua Wang - okladka książki

Distributed Machine Learning with Python. Accelerating model training and serving with distributed systems Guanhua Wang - audiobook MP3

Distributed Machine Learning with Python. Accelerating model training and serving with distributed systems Guanhua Wang - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
284
Dostępne formaty:
     PDF
     ePub

Ebook (29,90 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Reducing time cost in machine learning leads to a shorter waiting time for model training and a faster model updating cycle. Distributed machine learning enables machine learning practitioners to shorten model training and inference time by orders of magnitude. With the help of this practical guide, you'll be able to put your Python development knowledge to work to get up and running with the implementation of distributed machine learning, including multi-node machine learning systems, in no time. You'll begin by exploring how distributed systems work in the machine learning area and how distributed machine learning is applied to state-of-the-art deep learning models. As you advance, you'll see how to use distributed systems to enhance machine learning model training and serving speed. You'll also get to grips with applying data parallel and model parallel approaches before optimizing the in-parallel model training and serving pipeline in local clusters or cloud environments. By the end of this book, you'll have gained the knowledge and skills needed to build and deploy an efficient data processing pipeline for machine learning model training and inference in a distributed manner.

Wybrane bestsellery

O autorze książki

Guanhua Wang is a final-year Computer Science PhD student in the RISELab at UC Berkeley, advised by Professor Ion Stoica. His research lies primarily in the Machine Learning Systems area including fast collective communication, efficient in-parallel model training and real-time model serving. His research gained lots of attention from both academia and industry. He was invited to give talks to top-tier universities (MIT, Stanford, CMU, Princeton) and big tech companies (Facebook/Meta, Microsoft). He received his master’s degree from HKUST and bachelor’s degree from Southeast University in China. He also did some cool research on wireless networks. He likes playing soccer and runs half-marathon multiple times in the Bay Area of California.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint