ODBIERZ TWÓJ BONUS :: »

Data science od podstaw. Analiza danych w Pythonie. Wydanie II (ebook)(audiobook)(audiobook)

Autor:
Joel Grus
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
2.8/6  Opinie: 4
Stron:
352
Druk:
oprawa miękka
3w1 w pakiecie:
     PDF
     ePub
     Mobi

Książka

67,00 zł
43,55 zł

Dodaj do koszyka Wysyłamy w 24h

Ebook

67,00 zł
33,50 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Analityka danych jest uważana za wyjątkowo obiecującą dziedzinę wiedzy. Rozwija się błyskawicznie i znajduje coraz to nowsze zastosowania. Profesjonaliści biegli w eksploracji danych i wydobywaniu z nich pożytecznych informacji mogą liczyć na interesującą pracę i bardzo atrakcyjne warunki zatrudnienia. Jednak aby zostać analitykiem danych, trzeba znać matematykę i statystykę, a także nauczyć się programowania. Umiejętności w zakresie uczenia maszynowego i uczenia głębokiego również są ważne. W przypadku tak specyficznej dziedziny, jaką jest nauka o danych, szczególnie istotne jest zdobycie gruntownych podstaw i dogłębne ich zrozumienie.

W tym przewodniku opisano zagadnienia związane z podstawami nauki o danych. Wyjaśniono niezbędne elementy matematyki i statystyki. Przedstawiono także techniki budowy potrzebnych narzędzi i sposoby działania najistotniejszych algorytmów. Książka została skonstruowana tak, aby poszczególne implementacje były jak najbardziej przejrzyste i zrozumiałe. Zamieszczone tu przykłady napisano w Pythonie: jest to język dość łatwy do nauki, a pracę na danych ułatwia szereg przydatnych bibliotek Pythona. W drugim wydaniu znalazły się nowe tematy, takie jak uczenie głębokie, statystyka i przetwarzanie języka naturalnego, a także działania na ogromnych zbiorach danych. Zagadnienia te często pojawiają się w pracy współczesnego analityka danych.

W książce między innymi:

  • elementy algebry liniowej, statystyki i rachunku prawdopodobieństwa
  • zbieranie, oczyszczanie i eksploracja danych
  • algorytmy modeli analizy danych
  • podstawy uczenia maszynowego
  • systemy rekomendacji i przetwarzanie języka naturalnego
  • analiza sieci społecznościowych i algorytm MapReduce

Nauka o danych: bazuj na solidnych podstawach!

O autorze

1 Joel Grus

Joel Grus jest inżynierem oprogramowania, analitykiem danych i autorem świetnie sprzedających się książek. Obecnie zajmuje się pracą badawczą w Allen Institute for Artificial Intelligence w Seattle. Wcześniej był zatrudniony w firmie Google i kilku startupach. Mieszka w Seattle, gdzie regularnie uczestniczy w spotkaniach lokalnej społeczności analityków danych. Regularnie publikuje posty na swoim blogu (joelgrus.com) i koncie @joelgrus w serwisie Twitter (http://twitter.com/joelgrus/).

Zamknij

Wybierz metodę płatności