×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

The Deep Learning with PyTorch Workshop. Build deep neural networks and artificial intelligence applications with PyTorch

(ebook) (audiobook) (audiobook) Książka w języku 1
Autor:
Hyatt Saleh
The Deep Learning with PyTorch Workshop. Build deep neural networks and artificial intelligence applications with PyTorch Hyatt Saleh - okladka książki

The Deep Learning with PyTorch Workshop. Build deep neural networks and artificial intelligence applications with PyTorch Hyatt Saleh - okladka książki

The Deep Learning with PyTorch Workshop. Build deep neural networks and artificial intelligence applications with PyTorch Hyatt Saleh - audiobook MP3

The Deep Learning with PyTorch Workshop. Build deep neural networks and artificial intelligence applications with PyTorch Hyatt Saleh - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
330
Dostępne formaty:
     PDF
     ePub
     Mobi
Want to get to grips with one of the most popular machine learning libraries for deep learning? The Deep Learning with PyTorch Workshop will help you do just that, jumpstarting your knowledge of using PyTorch for deep learning even if you’re starting from scratch.

It’s no surprise that deep learning’s popularity has risen steeply in the past few years, thanks to intelligent applications such as self-driving vehicles, chatbots, and voice-activated assistants that are making our lives easier. This book will take you inside the world of deep learning, where you’ll use PyTorch to understand the complexity of neural network architectures.

The Deep Learning with PyTorch Workshop starts with an introduction to deep learning and its applications. You’ll explore the syntax of PyTorch and learn how to define a network architecture and train a model. Next, you’ll learn about three main neural network architectures - convolutional, artificial, and recurrent - and even solve real-world data problems using these networks. Later chapters will show you how to create a style transfer model to develop a new image from two images, before finally taking you through how RNNs store memory to solve key data issues.

By the end of this book, you’ll have mastered the essential concepts, tools, and libraries of PyTorch to develop your own deep neural networks and intelligent apps.

Wybrane bestsellery

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności