ODBIERZ TWÓJ BONUS :: »

Python Reinforcement Learning Projects

(ebook) (audiobook) (audiobook) Język publikacji: angielski
Python Reinforcement Learning Projects Sean Saito, Yang Wenzhuo, Rajalingappaa Shanmugamani - okładka książki

Python Reinforcement Learning Projects Sean Saito, Yang Wenzhuo, Rajalingappaa Shanmugamani - okładka książki

Python Reinforcement Learning Projects Sean Saito, Yang Wenzhuo, Rajalingappaa Shanmugamani - okładka audiobooka MP3

Python Reinforcement Learning Projects Sean Saito, Yang Wenzhuo, Rajalingappaa Shanmugamani - okładka audiobooks CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
287
3w1 w pakiecie:
     PDF
     ePub
     Mobi

Ebook

159,00 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Przenieś na półkę

Do przechowalni

Deploy autonomous agents in business systems using powerful Python libraries and sophisticated reinforcement learning models

Key Features

  • Implement Q-learning and Markov models with Python and OpenAI
  • Explore the power of TensorFlow to build self-learning models
  • Eight AI projects to gain confidence in building self-trained applications

Book Description

Reinforcement learning (RL) is the next big leap in the artificial intelligence domain, given that it is unsupervised, optimized, and fast. Python Reinforcement Learning Projects takes you through various aspects and methodologies of reinforcement learning, with the help of insightful projects.

You will learn about core concepts of reinforcement learning, such as Q-learning, Markov models, the Monte-Carlo process, and deep reinforcement learning. As you make your way through the book, you'll work on projects with various datasets, including numerical, text, video, and audio, and will gain experience in gaming, image rocessing, audio processing, and recommendation system projects. You'll explore TensorFlow and OpenAI Gym to implement a deep learning RL agent that can play an Atari game. In addition to this, you will learn how to tune and configure RL algorithms and parameters by building agents for different kinds of games. In the concluding chapters, you'll get to grips with building self-learning models that will not only uncover layers of data but also reason and make decisions.

By the end of this book, you will have created eight real-world projects that explore reinforcement learning and will have handson experience with real data and artificial intelligence (AI) problems.

What you will learn

  • Train and evaluate neural networks built using TensorFlow for RL
  • Use RL algorithms in Python and TensorFlow to solve CartPole balancing
  • Create deep reinforcement learning algorithms to play Atari games
  • Deploy RL algorithms using OpenAI Universe
  • Develop an agent to chat with humans
  • Implement basic actor-critic algorithms for continuous control
  • Apply advanced deep RL algorithms to games such as Minecraft
  • Autogenerate an image classifier using RL

Who this book is for

Python Reinforcement Learning Projects is for data analysts, data scientists, and machine learning professionals, who have working knowledge of machine learning techniques and are looking to build better performing, automated, and optimized deep learning models. Individuals who want to work on self-learning model projects will also find this book useful.

0 Sean Saito, Yang Wenzhuo, Rajalingappaa Shanmugamani

Zamknij

Wybierz metodę płatności