×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Linear Regression With Python. A Tutorial Introduction to the Mathematics of Regression Analysis James V Stone

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Linear Regression With Python. A Tutorial Introduction to the Mathematics of Regression Analysis James V Stone - okladka książki

Linear Regression With Python. A Tutorial Introduction to the Mathematics of Regression Analysis James V Stone - okladka książki

Linear Regression With Python. A Tutorial Introduction to the Mathematics of Regression Analysis James V Stone - audiobook MP3

Linear Regression With Python. A Tutorial Introduction to the Mathematics of Regression Analysis James V Stone - audiobook CD

Autor:
James V Stone
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
140
Dostępny format:
     PDF

Ebook (35,91 zł najniższa cena z 30 dni)

39,90 zł (-10%)
35,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(35,91 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

This book offers a detailed yet approachable introduction to linear regression, blending mathematical theory with Python-based practical applications. Beginning with fundamentals, it explains the best-fitting line, regression and causation, and statistical measures like variance, correlation, and the coefficient of determination. Clear examples and Python code ensure readers can connect theory to implementation.
As the journey continues, readers explore statistical significance through concepts like t-tests, z-tests, and p-values, understanding how to assess slopes, intercepts, and overall model fit. Advanced chapters cover multivariate regression, introducing matrix formulations, the best-fitting plane, and methods to handle multiple variables. Topics such as Bayesian regression, nonlinear models, and weighted regression are explored in depth, with step-by-step coding guides for hands-on practice.
The final sections tie together these techniques with maximum likelihood estimation and practical summaries. Appendices provide resources such as matrix tutorials, key equations, and mathematical symbols. Designed for both beginners and professionals, this book ensures a structured learning experience. Basic mathematical knowledge or foundation is recommended.

Wybrane bestsellery

O autorze książki

James V Stone is a distinguished academic and author specializing in computational neuroscience, artificial intelligence, and information theory. He earned a BSc in Psychology and Pharmacology from Manchester University, an MSc in Knowledge-Based Systems, and a DPhil in Computer Vision from Sussex University. A former Wellcome Mathematical Biology Research Fellow and Associate Professor at the University of Sheffield, James has investigated topics like brain evolution, quantum mechanics, and the Baldwin effect. Since 2017, he has focused on making complex scientific ideas accessible through compelling writing.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
35,91 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.