×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Learn Python by Building Data Science Applications. A fun, project-based guide to learning Python 3 while building real-world apps Philipp Kats, David Katz

(ebook) (audiobook) (audiobook) Książka w języku 1
Learn Python by Building Data Science Applications. A fun, project-based guide to learning Python 3 while building real-world apps Philipp Kats, David Katz - okladka książki

Learn Python by Building Data Science Applications. A fun, project-based guide to learning Python 3 while building real-world apps Philipp Kats, David Katz - okladka książki

Learn Python by Building Data Science Applications. A fun, project-based guide to learning Python 3 while building real-world apps Philipp Kats, David Katz - audiobook MP3

Learn Python by Building Data Science Applications. A fun, project-based guide to learning Python 3 while building real-world apps Philipp Kats, David Katz - audiobook CD

Autorzy:
Philipp Kats, David Katz
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
482
Dostępne formaty:
     PDF
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
Python is the most widely used programming language for building data science applications. Complete with step-by-step instructions, this book contains easy-to-follow tutorials to help you learn Python and develop real-world data science projects. The “secret sauce” of the book is its curated list of topics and solutions, put together using a range of real-world projects, covering initial data collection, data analysis, and production.
This Python book starts by taking you through the basics of programming, right from variables and data types to classes and functions. You’ll learn how to write idiomatic code and test and debug it, and discover how you can create packages or use the range of built-in ones. You’ll also be introduced to the extensive ecosystem of Python data science packages, including NumPy, Pandas, scikit-learn, Altair, and Datashader. Furthermore, you’ll be able to perform data analysis, train models, and interpret and communicate the results. Finally, you’ll get to grips with structuring and scheduling scripts using Luigi and sharing your machine learning models with the world as a microservice.
By the end of the book, you’ll have learned not only how to implement Python in data science projects, but also how to maintain and design them to meet high programming standards.

Wybrane bestsellery

O autorach książki

Philipp Kats is a researcher at the Urban Complexity Lab, NYU CUSP, a research fellow at Kazan Federal University, and a data scientist at StreetEasy, with many years of experience in software development. His interests include data analysis, urban studies, data journalism, and visualization. Having a bachelor's degree in architectural design and a having followed the rocky path (at first) of being a self-taught developer, Philipp knows the pain points of learning programming and is eager to share his experience.
David Katz is a researcher and holds a Ph.D. in mathematics. As a mathematician at heart, he sees code as a tool to express his questions. David believes that code literacy is essential as it applies to most disciplines and professions. David is passionate about sharing his knowledge and has 6 years of experience teaching college and high school students.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
98,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.