Implementing Statistics with Python Wei-Meng Lee
(ebook)
(audiobook)
(audiobook)
- Autor:
- Wei-Meng Lee
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 356
- Dostępne formaty:
-
ePubMobi
Czytaj fragment
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Implementing Statistics with Python
Description
Statistics is an important skill set to have when working as a quality analyst, a mathematician, a data analyst, a software engineer, or any analytical job. This book, "Implementing Statistics with Python," will teach you the basics of statistics and how to use Python to analyze data. You will learn to find patterns, quantify uncertainty, and make data-driven predictions with confidence.
You will start with basic statistics and then use Python libraries like NumPy and Pandas for data manipulation. You will also learn data visualization with Matplotlib and Seaborn to create informative charts. The book covers probability theory and statistical inference to help you make data-driven decisions. You will be exploring regression and time series analysis with ARIMA for forecasting. Finally, the book introduces ML algorithms, preparing you for real-world data science projects.
The book focuses on applying statistics rather than theory, using popular libraries like NumPy, SciPy, Pandas, Matplotlib, and Scikit-Learn. Reading this book will give you a good foundation for working with ML, business analytics, and data-driven business challenges. Key Features
Learn the various aspects of statistics and its applications in real-world scenarios.
Learn about the various libraries in Python for working with data.
Adopt the learn-by-doing approach to solve real-world statistics problems.
Learn how statistics is applied to Machine Learning. What you will learn
Learn the fundamentals of Python and its libraries like Numpy, Pandas, Matplotlib and Seaborn.
Grasp descriptive statistics and probability concepts.
Perform statistical inference with Chi-square, ANOVA, and regression analysis.
Skillfully navigate multivariate and time series analysis.
Apply statistical techniques in practical ML. Who this book is for
This book is for readers with basic Python knowledge who want to apply statistics in real-life scenarios, and those pursuing careers in data analytics, data engineering, data science, ML, and AI. It is also ideal for students beginning a course in statistics. Table of Contents
1. Introduction to Statistics
2. Python Basics for Statistics
3. Introduction to NumPy and Pandas for Data Manipulation
4. Data Visualization with Matplotlib and Seaborn
5. Descriptive Statistics
6. Probability Theory
7. Statistical Inference
8. Regression Analysis
9. Multivariate Analysis
10. Time Series Analysis
11. Machine Learning for Statistics
12. Practical Statistical Analysis in Machine Learning
Statistics is an important skill set to have when working as a quality analyst, a mathematician, a data analyst, a software engineer, or any analytical job. This book, "Implementing Statistics with Python," will teach you the basics of statistics and how to use Python to analyze data. You will learn to find patterns, quantify uncertainty, and make data-driven predictions with confidence.
You will start with basic statistics and then use Python libraries like NumPy and Pandas for data manipulation. You will also learn data visualization with Matplotlib and Seaborn to create informative charts. The book covers probability theory and statistical inference to help you make data-driven decisions. You will be exploring regression and time series analysis with ARIMA for forecasting. Finally, the book introduces ML algorithms, preparing you for real-world data science projects.
The book focuses on applying statistics rather than theory, using popular libraries like NumPy, SciPy, Pandas, Matplotlib, and Scikit-Learn. Reading this book will give you a good foundation for working with ML, business analytics, and data-driven business challenges. Key Features
Learn the various aspects of statistics and its applications in real-world scenarios.
Learn about the various libraries in Python for working with data.
Adopt the learn-by-doing approach to solve real-world statistics problems.
Learn how statistics is applied to Machine Learning. What you will learn
Learn the fundamentals of Python and its libraries like Numpy, Pandas, Matplotlib and Seaborn.
Grasp descriptive statistics and probability concepts.
Perform statistical inference with Chi-square, ANOVA, and regression analysis.
Skillfully navigate multivariate and time series analysis.
Apply statistical techniques in practical ML. Who this book is for
This book is for readers with basic Python knowledge who want to apply statistics in real-life scenarios, and those pursuing careers in data analytics, data engineering, data science, ML, and AI. It is also ideal for students beginning a course in statistics. Table of Contents
1. Introduction to Statistics
2. Python Basics for Statistics
3. Introduction to NumPy and Pandas for Data Manipulation
4. Data Visualization with Matplotlib and Seaborn
5. Descriptive Statistics
6. Probability Theory
7. Statistical Inference
8. Regression Analysis
9. Multivariate Analysis
10. Time Series Analysis
11. Machine Learning for Statistics
12. Practical Statistical Analysis in Machine Learning
Wybrane bestsellery
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@helion.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Proszę czekać...
Oceny i opinie klientów: Implementing Statistics with Python Wei-Meng Lee (0) Weryfikacja opinii następuję na podstawie historii zamówień na koncie Użytkownika umieszczającego opinię. Użytkownik mógł otrzymać punkty za opublikowanie opinii uprawniające do uzyskania rabatu w ramach Programu Punktowego.