×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Data Observability for Data Engineering. Proactive strategies for ensuring data accuracy and addressing broken data pipelines Michele Pinto, Sammy El Khammal

(ebook) (audiobook) (audiobook) Książka w języku 1
Data Observability for Data Engineering. Proactive strategies for ensuring data accuracy and addressing broken data pipelines Michele Pinto, Sammy El Khammal - okladka książki

Data Observability for Data Engineering. Proactive strategies for ensuring data accuracy and addressing broken data pipelines Michele Pinto, Sammy El Khammal - okladka książki

Data Observability for Data Engineering. Proactive strategies for ensuring data accuracy and addressing broken data pipelines Michele Pinto, Sammy El Khammal - audiobook MP3

Data Observability for Data Engineering. Proactive strategies for ensuring data accuracy and addressing broken data pipelines Michele Pinto, Sammy El Khammal - audiobook CD

Autorzy:
Michele Pinto, Sammy El Khammal
Serie wydawnicze:
Learning
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
228
Dostępne formaty:
     PDF
     ePub

Ebook (98,10 zł najniższa cena z 30 dni)

109,00 zł (-10%)
98,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(98,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

In the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization.
This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You’ll see how it builds on data quality monitoring and understand its significance from the data engineering perspective. Once you're familiar with the techniques and elements of data observability, you'll get hands-on with a practical Python project to reinforce what you've learned. Toward the end of the book, you’ll apply your expertise to explore diverse use cases and experiment with projects to seamlessly implement data observability in your organization.
Equipped with the mastery of data observability intricacies, you’ll be able to make your organization future-ready and resilient and never worry about the quality of your data pipelines again.

Wybrane bestsellery

O autorach książki

Michele Pinto is the Head of Engineering at Kensu. With over 15 years of experience, Michele has a great knack for understanding how data observability and data engineering are closely linked. He started his career as a software engineer and has worked since then in various roles, such as big data engineer, big data architect, head of data and until recently he was a Head of Engineering. He has a great community presence and believes in giving back to the community. He has also been a teacher for Digital Product Management Master TAG Innovation School in Milan, Italy. His collaboration on the book has been prompt, swift, eager, and very invested.
Sammy El Khammal works at Kensu. He started off as a field engineer and worked his way up to the position of product manager. In the past, he has also worked with Mercedes as their Business Development Analyst – Intern. He has also been an O'Reilly teacher for 3 workshops on data quality, lineage monitoring, and data observability. During that time, he provided some brilliant insights, very responsive behaviour, and immense talent and determination.

Zobacz pozostałe książki z serii Learning

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
98,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.