×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Codeless Deep Learning with KNIME. Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform KNIME AG, Kathrin Melcher, Rosaria Silipo

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Codeless Deep Learning with KNIME. Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform KNIME AG, Kathrin Melcher, Rosaria Silipo - okladka książki

Codeless Deep Learning with KNIME. Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform KNIME AG, Kathrin Melcher, Rosaria Silipo - okladka książki

Codeless Deep Learning with KNIME. Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform KNIME AG, Kathrin Melcher, Rosaria Silipo - audiobook MP3

Codeless Deep Learning with KNIME. Build, train, and deploy various deep neural network architectures using KNIME Analytics Platform KNIME AG, Kathrin Melcher, Rosaria Silipo - audiobook CD

Autorzy:
KNIME AG, Kathrin Melcher, Rosaria Silipo
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
384
Dostępne formaty:
     PDF
     ePub
     Mobi
KNIME Analytics Platform is an open source software used to create and design data science workflows. This book is a comprehensive guide to the KNIME GUI and KNIME deep learning integration, helping you build neural network models without writing any code. It’ll guide you in building simple and complex neural networks through practical and creative solutions for solving real-world data problems.

Starting with an introduction to KNIME Analytics Platform, you’ll get an overview of simple feed-forward networks for solving simple classification problems on relatively small datasets. You’ll then move on to build, train, test, and deploy more complex networks, such as autoencoders, recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs). In each chapter, depending on the network and use case, you’ll learn how to prepare data, encode incoming data, and apply best practices.

By the end of this book, you’ll have learned how to design a variety of different neural architectures and will be able to train, test, and deploy the final network.

Wybrane bestsellery

O autorach książki

Kathrin Melcher is a data scientist at KNIME. She holds a master's degree in mathematics from the University of Konstanz, Germany. She joined the evangelism team at KNIME in 2017 and has a strong interest in data science and machine learning algorithms. She enjoys teaching and sharing her data science knowledge with the community, for example, in the book From Excel to KNIME, as well as on various blog posts and at training courses, workshops, and conference presentations.
Rosaria Silipo, Ph.D., now head of data science evangelism at KNIME, has spent 25+ years in applied AI, predictive analytics, and machine learning at Siemens, Viseca, Nuance Communications, and private consulting. Sharing her practical experience in a broad range of industries and deployments, including IoT, customer intelligence, financial services, social media, and cybersecurity, Rosaria has authored 50+ technical publications, including her recent books Guide to Intelligent Data Science (Springer) and Codeless Deep Learning with KNIME (Packt).

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
134,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.