×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Zaawansowana analiza danych w PySpark. Metody przetwarzania informacji na szeroką skalę z wykorzystaniem Pythona i systemu Spark Akash Tandon, Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills

(ebook) (audiobook) (audiobook)
Autorzy:
Akash Tandon, Sandy Ryza, Uri Laserson, Sean Owen, Josh Wills
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
192
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Książka (41,40 zł najniższa cena z 30 dni)

69,00 zł (-40%)
41,40 zł

Dodaj do koszyka Wysyłamy w 24h

(41,40 zł najniższa cena z 30 dni)

Ebook (29,90 zł najniższa cena z 30 dni)

69,00 zł (-50%)
34,50 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Potrzeby w zakresie analizy dużych zbiorów danych i wyciągania z nich użytecznych informacji stale rosną. Spośród dostępnych narzędzi przeznaczonych do tych zastosowań szczególnie przydatny jest PySpark - interfejs API systemu Spark dla języka Python. Apache Spark świetnie się nadaje do analizy dużych zbiorów danych, a PySpark skutecznie ułatwia integrację Sparka ze specjalistycznymi narzędziami PyData. By jednak można było w pełni skorzystać z tych możliwości, konieczne jest zrozumienie interakcji między algorytmami, zbiorami danych i wzorcami używanymi w analizie danych.

Oto praktyczny przewodnik po wersji 3.0 systemu Spark, metodach statystycznych i rzeczywistych zbiorach danych. Omówiono w nim zasady rozwiązywania problemów analitycznych za pomocą interfejsu PySpark, z wykorzystaniem dobrych praktyk programowania w systemie Spark. Po lekturze można bezproblemowo zagłębić się we wzorce analityczne oparte na popularnych technikach przetwarzania danych, takich jak klasyfikacja, grupowanie, filtrowanie i wykrywanie anomalii, stosowane w genomice, bezpieczeństwie systemów IT i finansach. Dodatkowym plusem są opisy wykorzystania przetwarzania obrazów i języka naturalnego. Zaletą jest też szereg rzeczywistych przykładów dużych zbiorów danych i ich zaawansowanej analizy.

Dzięki książce poznasz:

  • model programowania w ekosystemie Spark
  • podstawowe metody stosowane w nauce o danych
  • pełne implementacje analiz dużych publicznych zbiorów danych
  • konkretne przypadki użycia narzędzi uczenia maszynowego
  • kod, który łatwo dostosujesz do swoich potrzeb

PySpark: systemowa odpowiedź na problemy inżyniera danych!

Wybrane bestsellery

O autorach książki

Akash Tandon jest inżynierem danych i przedsiębiorcą, a także współzałożycielem i dyrektorem technicznym firmy Looppanel.

Sandy Ryza jest starszym analitykiem w Cloudera i aktywnym uczestnikiem projektu Apache Spark.

Uri Laserson jest starszym analitykiem w Cloudera, gdzie pracuje nad językiem Python w środowisku Hadoop.

Sean Owen jest dyrektorem działu analiz danych na region EMEA w Cloudera i uczestnikiem projektu Apache Spark.

Josh Wills jest starszym menedżerem działu analiz danych w Cloudera i inicjatorem pakietu Apache Crunch.

Zobacz pozostałe książki z serii

Helion - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Książka
41,40 zł
Dodaj do koszyka
Ebook
34,50 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.