×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Time Series Forecasting using Deep Learning Ivan Gridin

(ebook) (audiobook) (audiobook) Książka w języku 1
Time Series Forecasting using Deep Learning Ivan Gridin - okladka książki

Time Series Forecasting using Deep Learning Ivan Gridin - okladka książki

Time Series Forecasting using Deep Learning Ivan Gridin - audiobook MP3

Time Series Forecasting using Deep Learning Ivan Gridin - audiobook CD

Autor:
Ivan Gridin
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
314
Dostępne formaty:
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
Explore the infinite possibilities offered by Artificial Intelligence and Neural Networks

Key Features
Covers numerous concepts, techniques, best practices and troubleshooting tips by community experts.
Includes practical demonstration of robust deep learning prediction models with exciting use-cases.
Covers the use of the most powerful research toolkit such as Python, PyTorch, and Neural Network Intelligence.

Description
This book is amid at teaching the readers how to apply the deep learning techniques to the time series forecasting challenges and how to build prediction models using PyTorch.

The readers will learn the fundamentals of PyTorch in the early stages of the book. Next, the time series forecasting is covered in greater depth after the programme has been developed. You will try to use machine learning to identify the patterns that can help us forecast the future results. It covers methodologies such as Recurrent Neural Network, Encoder-decoder model, and Temporal Convolutional Network, all of which are state-of-the-art neural network architectures. Furthermore, for good measure, we have also introduced the neural architecture search, which automates searching for an ideal neural network design for a certain task.

Finally by the end of the book, readers would be able to solve complex real-world prediction issues by applying the models and strategies learnt throughout the course of the book. This book also offers another great way of mastering deep learning and its various techniques.

What you will learn
Work with the Encoder-Decoder concept and Temporal Convolutional Network mechanics.
Learn the basics of neural architecture search with Neural Network Intelligence.
Combine standard statistical analysis methods with deep learning approaches.
Automate the search for optimal predictive architecture.
Design your custom neural network architecture for specific tasks.
Apply predictive models to real-world problems of forecasting stock quotes, weather, and natural processes.

Who this book is for
This book is written for engineers, data scientists, and stock traders who want to build time series forecasting programs using deep learning. Possessing some familiarity of Python is sufficient, while a basic understanding of machine learning is desirable but not needed.

Table of Contents
1. Time Series Problems and Challenges
2. Deep Learning with PyTorch
3. Time Series as Deep Learning Problem
4. Recurrent Neural Networks
5. Advanced Forecasting Models
6. PyTorch Model Tuning with Neural Network Intelligence
7. Applying Deep Learning to Real-world Forecasting Problems
8. PyTorch Forecasting Package
9. What is Next?

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
84,99 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.