×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning for OpenCV 4. Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn - Second Edition

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning for OpenCV 4. Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn - Second Edition Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler - okladka książki

Machine Learning for OpenCV 4. Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn - Second Edition Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler - okladka książki

Machine Learning for OpenCV 4. Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn - Second Edition Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler - audiobook MP3

Machine Learning for OpenCV 4. Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn - Second Edition Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
420
Dostępne formaty:
     PDF
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
OpenCV is an opensource library for building computer vision apps. The latest release, OpenCV 4, offers a plethora of features and platform improvements that are covered comprehensively in this up-to-date second edition.
You'll start by understanding the new features and setting up OpenCV 4 to build your computer vision applications. You will explore the fundamentals of machine learning and even learn to design different algorithms that can be used for image processing. Gradually, the book will take you through supervised and unsupervised machine learning. You will gain hands-on experience using scikit-learn in Python for a variety of machine learning applications. Later chapters will focus on different machine learning algorithms, such as a decision tree, support vector machines (SVM), and Bayesian learning, and how they can be used for object detection computer vision operations. You will then delve into deep learning and ensemble learning, and discover their real-world applications, such as handwritten digit classification and gesture recognition. Finally, you’ll get to grips with the latest Intel OpenVINO for building an image processing system.
By the end of this book, you will have developed the skills you need to use machine learning for building intelligent computer vision applications with OpenCV 4.

Wybrane bestsellery

O autorach książki

Aditya Sharma is a senior engineer at Robert Bosch working on solving real-world autonomous computer vision problems. At Robert Bosch, he also secured first place at an AI hackathon 2019. He has been associated with some of the premier institutes of India, including IIT Mandi and IIIT Hyderabad. At IIT, he published papers on medical imaging using deep learning at ICIP 2019 and MICCAI 2019. At IIIT, his work revolved around document image super-resolution.
He is a motivated writer and has written many articles on machine learning and deep learning for DataCamp and LearnOpenCV. Aditya runs his own YouTube channel and has contributed as a speaker at the NCVPRIPG conference (2017) and Aligarh Muslim University for a workshop on deep learning.
Vishwesh Ravi Shrimali graduated from BITS Pilani, where he studied mechanical engineering, in 2018. He also completed his Masters in Machine Learning and AI from LJMU in 2021. He has authored - Machine learning for OpenCV (2nd edition), Computer Vision Workshop and Data Science for Marketing Analytics (2nd edition) by Packt. When he is not writing blogs or working on projects, he likes to go on long walks or play his acoustic guitar.
Michael Beyeler is a postdoctoral fellow in neuroengineering and data science at the University of Washington, where he is working on computational models of bionic vision in order to improve the perceptual experience of blind patients implanted with a retinal prosthesis (bionic eye).His work lies at the intersection of neuroscience, computer engineering, computer vision, and machine learning. He is also an active contributor to several open source software projects, and has professional programming experience in Python, C/C++, CUDA, MATLAB, and Android. Michael received a PhD in computer science from the University of California, Irvine, and an MSc in biomedical engineering and a BSc in electrical engineering from ETH Zurich, Switzerland.

Aditya Sharma, Vishwesh Ravi Shrimali, Michael Beyeler - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint