×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning at Scale with H2O. A practical guide to building and deploying machine learning models on enterprise systems Gregory Keys, David Whiting

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning at Scale with H2O. A practical guide to building and deploying machine learning models on enterprise systems Gregory Keys, David Whiting - okladka książki

Machine Learning at Scale with H2O. A practical guide to building and deploying machine learning models on enterprise systems Gregory Keys, David Whiting - okladka książki

Machine Learning at Scale with H2O. A practical guide to building and deploying machine learning models on enterprise systems Gregory Keys, David Whiting - audiobook MP3

Machine Learning at Scale with H2O. A practical guide to building and deploying machine learning models on enterprise systems Gregory Keys, David Whiting - audiobook CD

Autorzy:
Gregory Keys, David Whiting
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
396
Dostępne formaty:
     PDF
     ePub
H2O is an open source, fast, and scalable machine learning framework that allows you to build models using big data and then easily productionalize them in diverse enterprise environments.
Machine Learning at Scale with H2O begins with an overview of the challenges faced in building machine learning models on large enterprise systems, and then addresses how H2O helps you to overcome them. You’ll start by exploring H2O’s in-memory distributed architecture and find out how it enables you to build highly accurate and explainable models on massive datasets using your favorite ML algorithms, language, and IDE. You’ll also get to grips with the seamless integration of H2O model building and deployment with Spark using H2O Sparkling Water. You’ll then learn how to easily deploy models with H2O MOJO. Next, the book shows you how H2O Enterprise Steam handles admin configurations and user management, and then helps you to identify different stakeholder perspectives that a data scientist must understand in order to succeed in an enterprise setting. Finally, you’ll be introduced to the H2O AI Cloud platform and explore the entire machine learning life cycle using multiple advanced AI capabilities.
By the end of this book, you’ll be able to build and deploy advanced, state-of-the-art machine learning models for your business needs.

Wybrane bestsellery

O autorach książki

Gregory Keys is a Senior Solution Architect at H2O and has over 20 years of experience designing and implementing software and data systems. He innovated a model deployment and governance framework that was incorporated into Cloudera machine learning product line.
David Whiting is a Data Science Director and Head of Training at H2O.ai. He has over 18 years of experience in business, consulting, and academia. He is adept at developing and maintaining long-term collaborations with experts in multiple fields. He has both led and participated in multi-disciplinary teams and he enjoys mentoring developing analysts and has a substantial experience in doing so.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.