×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Meta Learning with Python. Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow Sudharsan Ravichandiran

(ebook) (audiobook) (audiobook) Książka w języku 1
Hands-On Meta Learning with Python. Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow Sudharsan Ravichandiran - okladka książki

Hands-On Meta Learning with Python. Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow Sudharsan Ravichandiran - okladka książki

Hands-On Meta Learning with Python. Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow Sudharsan Ravichandiran - audiobook MP3

Hands-On Meta Learning with Python. Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow Sudharsan Ravichandiran - audiobook CD

Autor:
Sudharsan Ravichandiran
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
226
Dostępne formaty:
     PDF
     ePub
     Mobi
Meta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster.
Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning.
By the end of this book, you will be familiar with state-of-the-art meta learning algorithms and able to enable human-like cognition for your machine learning models.

Wybrane bestsellery

O autorze książki

Sudharsan Ravichandiran is a data scientist and artificial intelligence enthusiast. He holds a Bachelors in Information Technology from Anna University. His area of research focuses on practical implementations of deep learning and reinforcement learning including natural language processing and computer vision. He is an open-source contributor and loves answering questions on Stack Overflow.

Sudharsan Ravichandiran - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.