×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Data Analysis with Pandas. A Python data science handbook for data collection, wrangling, analysis, and visualization - Second Edition Stefanie Molin, Ken Jee

(ebook) (audiobook) (audiobook) Książka w języku 1
Hands-On Data Analysis with Pandas. A Python data science handbook for data collection, wrangling, analysis, and visualization - Second Edition Stefanie Molin, Ken Jee - okladka książki

Hands-On Data Analysis with Pandas. A Python data science handbook for data collection, wrangling, analysis, and visualization - Second Edition Stefanie Molin, Ken Jee - okladka książki

Hands-On Data Analysis with Pandas. A Python data science handbook for data collection, wrangling, analysis, and visualization - Second Edition Stefanie Molin, Ken Jee - audiobook MP3

Hands-On Data Analysis with Pandas. A Python data science handbook for data collection, wrangling, analysis, and visualization - Second Edition Stefanie Molin, Ken Jee - audiobook CD

Autorzy:
Stefanie Molin, Ken Jee
Serie wydawnicze:
Practical
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
788
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (161,10 zł najniższa cena z 30 dni)

179,00 zł (-10%)
161,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(161,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Extracting valuable business insights is no longer a ‘nice-to-have’, but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time.
This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn.
Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data.
This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making – valuable knowledge that can be applied across multiple domains.

Wybrane bestsellery

O autorze książki

Stefanie Molin is a data scientist and software engineer at Bloomberg LP in NYC, tackling tough problems in information security, particularly revolving around anomaly detection, building tools for gathering data, and knowledge sharing. She has extensive experience in data science, designing anomaly detection solutions, and utilizing machine learning in both R and Python in the AdTech and FinTech industries. She holds a B.S. in operations research from Columbia University's Fu Foundation School of Engineering and Applied Science, with minors in economics, and entrepreneurship and innovation. In her free time, she enjoys traveling the world, inventing new recipes, and learning new languages spoken among both people and computers.

Zobacz pozostałe książki z serii Practical

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
161,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.