ODBIERZ TWÓJ BONUS :: »

Uczenie maszynowe w Pythonie. Receptury

(ebook) (audiobook) (audiobook)
Autor:
Chris Albon
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
6.0/6  Opinie: 2
Stron:
344
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Książka

89,00 zł

Dodaj do koszyka

Dostawa 0,00 zł

Ebook (29,90 zł najniższa cena z 30 dni)

89,00 zł (-40%)
53,40 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Druk na żądanie

Uczenie maszynowe jest dziś wykorzystywane w różnych dziedzinach życia: w biznesie, w polityce, w organizacjach non profit i oczywiście w nauce. Samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania danych w wiedzę. Powstało sporo książek wyjaśniających sposób działania tych algorytmów i prezentujących nieraz spektakularne przykłady ich wykorzystania. Do dyspozycji pozostają też narzędzia przeznaczone do tego rodzaju zastosowań, takie jak biblioteki Pythona, w tym pandas i scikit-learn. Problemem pozostaje implementacja rozwiązań codziennych problemów związanych z uczeniem maszynowym.

Z tej książki najwięcej skorzystają profesjonaliści, którzy znają podstawowe koncepcje związane z uczeniem maszynowym. Osoby te potraktują ją jako przewodnik ułatwiający rozwiązywanie konkretnych problemów napotykanych podczas codziennej pracy z uczeniem maszynowym. Dzięki zawartym tu recepturom takie zadania jak wczytywanie danych, obsługa danych tekstowych i liczbowych, wybór modelu czy redukcja wymiarowości staną się o wiele łatwiejsze do wykonania. Każda receptura zawiera kod, który można wstawić do swojego programu, połączyć lub zaadaptować według potrzeb. Przedstawiono także analizy wyjaśniające poszczególne rozwiązania i ich kontekst. Z tą książką płynnie przejdziesz od rozważań teoretycznych do opracowywania działających aplikacji i praktycznego korzystania z zalet uczenia maszynowego.

Receptury w tej książce dotyczą:

  • wektorów, macierzy i tablic
  • obsługi danych liczbowych i tekstowych, obrazów, a także związanych z datą i godziną
  • redukcji wymiarowości za pomocą wyodrębniania i wyboru cech
  • oceny i wyboru modelu oraz regresji liniowej i logistycznej
  • maszyn wektorów nośnych (SVM), naiwnej klasyfikacji bayesowskiej, klasteryzacji i sieci neuronowych
  • zapisywania i wczytywania wytrenowanych modeli

Uczenie maszynowe w Pythonie - użyj sprawdzonych receptur kodu!

Wybrane bestsellery

O autorze książki

1 Chris Albon

Dr Chris Albon jest analitykiem danych i politologiem. Od ponad dziesięciu lat stosuje statystykę, sztuczną inteligencję i inne zdobycze informatyki w polityce, socjologii i przy zarządzaniu akcjami humanitarnymi. Obecnie pracuje dla Devoted Health — wykorzystuje naukę o danych i maszynowe uczenie w celu rozwiązania problemów amerykańskiego systemu ochrony zdrowia. Wcześniej był głównym analitykiem danych w kenijskim startupie BRCK .

Helion - inne książki

Zamknij

Wybierz metodę płatności