×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning Projects for Mobile Applications. Build Android and iOS applications using TensorFlow Lite and Core ML Karthikeyan NG

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning Projects for Mobile Applications. Build Android and iOS applications using TensorFlow Lite and Core ML Karthikeyan NG - okladka książki

Machine Learning Projects for Mobile Applications. Build Android and iOS applications using TensorFlow Lite and Core ML Karthikeyan NG - okladka książki

Machine Learning Projects for Mobile Applications. Build Android and iOS applications using TensorFlow Lite and Core ML Karthikeyan NG - audiobook MP3

Machine Learning Projects for Mobile Applications. Build Android and iOS applications using TensorFlow Lite and Core ML Karthikeyan NG - audiobook CD

Autor:
Karthikeyan NG
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
246
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (107,10 zł najniższa cena z 30 dni)

119,00 zł (-10%)
107,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(107,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Machine learning is a technique that focuses on developing computer programs that can be modified when exposed to new data. We can make use of it for our mobile applications and this book will show you how to do so.
The book starts with the basics of machine learning concepts for mobile applications and how to get well equipped for further tasks. You will start by developing an app to classify age and gender using Core ML and Tensorflow Lite. You will explore neural style transfer and get familiar with how deep CNNs work. We will also take a closer look at Google’s ML Kit for the Firebase SDK for mobile applications. You will learn how to detect handwritten text on mobile. You will also learn how to create your own Snapchat filter by making use of facial attributes and OpenCV. You will learn how to train your own food classification model on your mobile; all of this will be done with the help of deep learning techniques. Lastly, you will build an image classifier on your mobile, compare its performance, and analyze the results on both mobile and cloud using TensorFlow Lite with an RCNN.
By the end of this book, you will not only have mastered the concepts of machine learning but also learned how to resolve problems faced while building powerful apps on mobiles using TensorFlow Lite, Caffe2, and Core ML.

Wybrane bestsellery

O autorze książki

Karthikeyan NG is the Head of Engineering and Technology at the Indian lifestyle and fashion retail brand. He served as a software engineer at Symantec Corporation and has worked with 2 US-based startups as an early employee and has built various products. He has 9+ years of experience in various scalable products using Web, Mobile, ML, AR, and VR technologies. He is an aspiring entrepreneur and technology evangelist. His interests lie in exploring new technologies and innovative ideas to resolve a problem. He has also bagged prizes from more than 15 hackathons, is a TEDx speaker and a speaker at technology conferences and meetups as well as guest lecturer at a Bengaluru University. When not at work, he is found trekking.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.