×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Inżynieria danych na platformie AWS. Jak tworzyć kompletne potoki uczenia maszynowego Chris Fregly, Antje Barth

(ebook) (audiobook) (audiobook)
Autorzy:
Chris Fregly, Antje Barth
Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
472
Druk:
oprawa miękka
Dostępne formaty:
     PDF
     ePub
     Mobi
Czytaj fragment

Książka (77,40 zł najniższa cena z 30 dni)

129,00 zł (-35%)
83,85 zł

Dodaj do koszyka Wysyłamy w 24h

(77,40 zł najniższa cena z 30 dni)

Ebook (39,90 zł najniższa cena z 30 dni)

129,00 zł (-50%)
64,50 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(39,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Platforma Amazon Web Services jest uważana za największą i najbardziej dojrzałą chmurę obliczeniową. Zapewnia bogaty zestaw specjalistycznych narzędzi ułatwiających realizację projektów z zakresu inżynierii danych i uczenia maszynowego. W ten sposób inżynierowie danych, architekci i menedżerowie mogą szybko zacząć używać danych do podejmowania kluczowych decyzji biznesowych. Uzyskanie optymalnej efektywności pracy takich projektów wymaga jednak dobrego rozeznania w możliwościach poszczególnych narzędzi, usług i bibliotek.

Dzięki temu praktycznemu przewodnikowi szybko nauczysz się tworzyć i uruchamiać procesy w chmurze, a następnie integrować wyniki z aplikacjami. Zapoznasz się ze scenariuszami stosowania technik sztucznej inteligencji: przetwarzania języka naturalnego, rozpoznawania obrazów, wykrywania oszustw, wyszukiwania kognitywnego czy wykrywania anomalii w czasie rzeczywistym. Ponadto dowiesz się, jak łączyć cykle rozwoju modeli z pobieraniem i analizą danych w powtarzalnych potokach MLOps. W książce znajdziesz też zbiór technik zabezpieczania projektów i procesów z obszaru inżynierii danych, takich jak stosowanie usługi IAM, uwierzytelnianie, autoryzacja, izolacja sieci, szyfrowanie danych w spoczynku czy postkwantowe szyfrowanie sieci dla danych w tranzycie.

Najciekawsze zagadnienia:

  • narzędzia AWS związane ze sztuczną inteligencją i z uczeniem maszynowym
  • kompletny cykl rozwoju modelu przetwarzania języka naturalnego
  • powtarzalne potoki MLOps
  • uczenie maszynowe w czasie rzeczywistym
  • wykrywanie anomalii i analiza strumieni danych
  • zabezpieczanie projektów i procesów z obszaru inżynierii danych

AWS i inżynieria danych: tak zwiększysz wydajność i obniżysz koszty!

Implementowanie solidnego kompletnego procesu uczenia maszynowego to żmudne zadanie, dodatkowo komplikowane przez szeroki zakres dostępnych narzędzi i technologii. Autorzy wykonali świetną robotę, a jej efekty pomogą zarówno nowicjuszom, jak i doświadczonym praktykom realizować to zadanie z wykorzystaniem możliwości, jakie dają usługi AWS

Brent Rabowsky, danolog w firmie Amazon Web Services

Wybrane bestsellery

O autorach książki

Chris Fregly jest głównym architektem rozwiązań w zakresie generatywnej AI w AWS i współautorem książki Inżynieria danych na platformie AWS (Helion, 2022).

Antje Barth jest główną programistką generatywnej AI w AWS i współautorką książki Inżynieria danych na platformie AWS.

Zobacz pozostałe książki z serii

Helion - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Książka
83,85 zł
Dodaj do koszyka
Ebook
64,50 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.