×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

The Economics of Data, Analytics, and Digital Transformation. The theorems, laws, and empowerments to guide your organization’s digital transformation Bill Schmarzo, Dr. Kirk Borne

(ebook) (audiobook) (audiobook) Książka w języku 1
The Economics of Data, Analytics, and Digital Transformation. The theorems, laws, and empowerments to guide your organization’s digital transformation Bill Schmarzo, Dr. Kirk Borne - okladka książki

The Economics of Data, Analytics, and Digital Transformation. The theorems, laws, and empowerments to guide your organization’s digital transformation Bill Schmarzo, Dr. Kirk Borne - okladka książki

The Economics of Data, Analytics, and Digital Transformation. The theorems, laws, and empowerments to guide your organization’s digital transformation Bill Schmarzo, Dr. Kirk Borne - audiobook MP3

The Economics of Data, Analytics, and Digital Transformation. The theorems, laws, and empowerments to guide your organization’s digital transformation Bill Schmarzo, Dr. Kirk Borne - audiobook CD

Autorzy:
Bill Schmarzo, Dr. Kirk Borne
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
260
Dostępne formaty:
     PDF
     ePub
     Mobi
In today’s digital era, every organization has data, but just possessing enormous amounts of data is not a sufficient market discriminator. The Economics of Data, Analytics, and Digital Transformation aims to provide actionable insights into the real market discriminators, including an organization’s data-fueled analytics products that inspire innovation, deliver insights, help make practical decisions, generate value, and produce mission success for the enterprise.

The book begins by first building your mindset to be value-driven and introducing the Big Data Business Model Maturity Index, its maturity index phases, and how to navigate the index. You will explore value engineering, where you will learn how to identify key business initiatives, stakeholders, advanced analytics, data sources, and instrumentation strategies that are essential to data science success. The book will help you accelerate and optimize your company’s operations through AI and machine learning.

By the end of the book, you will have the tools and techniques to drive your organization’s digital transformation.

Here are a few words from Dr. Kirk Borne, Data Scientist and Executive Advisor at Booz Allen Hamilton, about the book:
Data analytics should first and foremost be about action and value. Consequently, the great value of this book is that it seeks to be actionable. It offers a dynamic progression of purpose-driven ignition points that you can act upon.

Wybrane bestsellery

O autorze książki

Bill Schmarzo, the Dean of Big Data, is currently the Head of Customer Data Innovation at Dell Technologies. He is also a lecturer at Iowa State University and Coe College (Cedar Rapids, IA), a University of San Francisco School of Management Executive Fellow, and an Honorary Professor at the School of Business and Economics at the National University of Ireland-Galway, where he teaches his course Big Data MBA and Thinking Like a Data Scientist. He has authored four books, written over 300 blogs for Data Science Central, appeared on podcasts, given numerous keynote presentations and university lectures, and is an active social media lightening rod on the topics of data science, AI, data economics, design thinking, and team empowerment.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
89,91 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.