×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Machine Learning with Apache Spark Quick Start Guide. Uncover patterns, derive actionable insights, and learn from big data using MLlib Jillur Quddus

(ebook) (audiobook) (audiobook) Książka w języku 1
Machine Learning with Apache Spark Quick Start Guide. Uncover patterns, derive actionable insights, and learn from big data using MLlib Jillur Quddus - okladka książki

Machine Learning with Apache Spark Quick Start Guide. Uncover patterns, derive actionable insights, and learn from big data using MLlib Jillur Quddus - okladka książki

Machine Learning with Apache Spark Quick Start Guide. Uncover patterns, derive actionable insights, and learn from big data using MLlib Jillur Quddus - audiobook MP3

Machine Learning with Apache Spark Quick Start Guide. Uncover patterns, derive actionable insights, and learn from big data using MLlib Jillur Quddus - audiobook CD

Autor:
Jillur Quddus
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
240
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (80,91 zł najniższa cena z 30 dni)

89,90 zł (-10%)
80,91 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(80,91 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently.
But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it?
The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data.

Wybrane bestsellery

O autorze książki

Jillur Quddus is a lead technical architect, polyglot software engineer and data scientist with over 10 years of hands-on experience in architecting and engineering distributed, scalable, high-performance, and secure solutions used to combat serious organized crime, cybercrime, and fraud. Jillur has extensive experience of working within central government, intelligence, law enforcement, and banking, and has worked across the world including in Japan, Singapore, Malaysia, Hong Kong, and New Zealand. Jillur is both the founder of Keisan, a UK-based company specializing in open source distributed technologies and machine learning, and the lead technical architect at Methods, the leading digital transformation partner for the UK public sector.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
80,91 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.