×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Apache Spark 2: Data Processing and Real-Time Analytics. Master complex big data processing, stream analytics, and machine learning with Apache Spark Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Apache Spark 2: Data Processing and Real-Time Analytics. Master complex big data processing, stream analytics, and machine learning with Apache Spark Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei - okladka książki

Apache Spark 2: Data Processing and Real-Time Analytics. Master complex big data processing, stream analytics, and machine learning with Apache Spark Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei - okladka książki

Apache Spark 2: Data Processing and Real-Time Analytics. Master complex big data processing, stream analytics, and machine learning with Apache Spark Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei - audiobook MP3

Apache Spark 2: Data Processing and Real-Time Analytics. Master complex big data processing, stream analytics, and machine learning with Apache Spark Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei - audiobook CD

Autorzy:
Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei
Ocena:
Bądź pierwszym, który oceni tę książkę
Dostępne formaty:
     PDF
     ePub
     Mobi

Ebook (161,10 zł najniższa cena z 30 dni)

179,00 zł (-10%)
161,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(161,10 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform.

You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools.

By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle.

This Learning Path includes content from the following Packt products:

• Mastering Apache Spark 2.x by Romeo Kienzler
• Scala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar Alla
• Apache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbook

Wybrane bestsellery

O autorach książki

Romeo Kienzler works as the chief data scientist in the IBM Watson IoT worldwide team, helping clients to apply advanced machine learning at scale on their IoT sensor data. He holds a Master's degree in computer science from the Swiss Federal Institute of Technology, Zurich, with a specialization in information systems, bioinformatics, and applied statistics.
Md. Rezaul Karim is a researcher, author, and data science enthusiast with a strong computer science background, coupled with 10 years of research and development experience in machine learning, deep learning, and data mining algorithms to solve emerging bioinformatics research problems by making them explainable. He is passionate about applied machine learning, knowledge graphs, and explainable artificial intelligence (XAI).
Currently, he is working as a research scientist at Fraunhofer FIT, Germany. He is also a PhD candidate at RWTH Aachen University, Germany. Before joining FIT, he worked as a researcher at the Insight Centre for Data Analytics, Ireland. Previously, he worked as a lead software engineer at Samsung Electronics, Korea.
Sridhar?Alla?is the co-founder and CTO of Blue Whale Consulting and is expert at helping companies (big and small) define their vision for systems and capabilities that will allow them to establish a strategic execution plan to deal with the ever-growing data collected to support analytics and product teams. He has very experienced at dealing with all aspects of data collection, security, governance, and processing as part of end-to-end big data analytics and machine learning initiatives (including predictive modeling, deep learning, and ML automation).
Sridhar?is a published book author and an avid presenter at numerous conferences, including Strata, Hadoop World, and Spark Summit.? He also has several patents filed with the US PTO on large-scale computing and distributed systems.?
He has over 18 years' experience writing code in Scala, Java, C, C++, Python, R, and Go, and has extensive hands-on knowledge of Spark, Flink, TensorFlow, Keras, Hadoop, Cassandra, HBase, MongoDB, Riak, Redis, Zeppelin, Mesos, Docker, Kafka, ElasticSearch, Solr, H2O, machine learning, text analytics, distributed computing, and high-performance computing.
Sridhar lives with his wife and daughter in New Jersey and in his spare time loves blogging and coaching organizations on next-generation advancements in technology and their alignment with business goals.
Siamak Amirghodsi (Sammy) is interested in building advanced technical teams, executive management, Spark, Hadoop, big data analytics, AI, deep learning nets, TensorFlow, cognitive models, swarm algorithms, real-time streaming systems, quantum computing, financial risk management, trading signal discovery, econometrics, long-term financial cycles, IoT, blockchain, probabilistic graphical models, cryptography, and NLP.
Meenakshi Rajendran is experienced in the end-to-end delivery of data analytics and data science products for leading financial institutions. Meenakshi holds a master's degree in business administration and is a certified PMP with over 13 years of experience in global software delivery environments. Her areas of research and interest are Apache Spark, cloud, regulatory data governance, machine learning, Cassandra, and managing global data teams at scale.
Broderick Hall is a hands-on big data analytics expert and holds a masters degree in computer science with 20 years of experience in designing and developing complex enterprise-wide software applications with real-time and regulatory requirements at a global scale. He is a deep learning early adopter and is currently working on a large-scale cloud-based data platform with deep learning net augmentation.
Shuen Mei is a big data analytic platforms expert with 15+ years of experience in designing, building, and executing large-scale, enterprise-distributed financial systems with mission-critical low-latency requirements. He is certified in the Apache Spark, Cloudera Big Data platform, including Developer, Admin, and HBase. He is also a certified AWS solutions architect with emphasis on peta-byte range real-time data platform systems.

Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei - pozostałe książki

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
161,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.