×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Accelerate Deep Learning Workloads with Amazon SageMaker. Train, deploy, and scale deep learning models effectively using Amazon SageMaker Vadim Dabravolski

(ebook) (audiobook) (audiobook) Książka w języku 1
Accelerate Deep Learning Workloads with Amazon SageMaker. Train, deploy, and scale deep learning models effectively using Amazon SageMaker Vadim Dabravolski - okladka książki

Accelerate Deep Learning Workloads with Amazon SageMaker. Train, deploy, and scale deep learning models effectively using Amazon SageMaker Vadim Dabravolski - okladka książki

Accelerate Deep Learning Workloads with Amazon SageMaker. Train, deploy, and scale deep learning models effectively using Amazon SageMaker Vadim Dabravolski - audiobook MP3

Accelerate Deep Learning Workloads with Amazon SageMaker. Train, deploy, and scale deep learning models effectively using Amazon SageMaker Vadim Dabravolski - audiobook CD

Autor:
Vadim Dabravolski
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
278
Dostępne formaty:
     PDF
     ePub
Over the past 10 years, deep learning has grown from being an academic research field to seeing wide-scale adoption across multiple industries. Deep learning models demonstrate excellent results on a wide range of practical tasks, underpinning emerging fields such as virtual assistants, autonomous driving, and robotics. In this book, you will learn about the practical aspects of designing, building, and optimizing deep learning workloads on Amazon SageMaker. The book also provides end-to-end implementation examples for popular deep-learning tasks, such as computer vision and natural language processing. You will begin by exploring key Amazon SageMaker capabilities in the context of deep learning. Then, you will explore in detail the theoretical and practical aspects of training and hosting your deep learning models on Amazon SageMaker. You will learn how to train and serve deep learning models using popular open-source frameworks and understand the hardware and software options available for you on Amazon SageMaker. The book also covers various optimizations technique to improve the performance and cost characteristics of your deep learning workloads.

By the end of this book, you will be fluent in the software and hardware aspects of running deep learning workloads using Amazon SageMaker.

Wybrane bestsellery

O autorze książki

Vadim Dabravolski is a Solutions Architect and Machine Learning Engineer. He has over 15 years of career in software engineering, specifically data engineering and machine learning. During his tenure in AWS, Vadim helped many organizations to migrate their existing ML workloads or engineer new workloads for the Amazon SageMaker platform. Vadim was involved in the development of Amazon SageMaker capabilities and adoption of them in practical scenarios. Currently, Vadim works as an ML engineer, focusing on training and deploying large NLP models. The areas of interest include engineering distributed model training and evaluation, complex model deployments use cases, and optimizing inference characteristics of DL models.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
116,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.