Optimizing AI and Machine Learning Solutions
(ebook)
(audiobook)
(audiobook)
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 392
- Dostępne formaty:
-
ePubMobi
Czytaj fragment
Opis
książki
:
Optimizing AI and Machine Learning Solutions
Build high-impact ML/AI solutions by optimizing each step
Key Features
Build and fine-tune models for maximum performance.
Practical tips to make your own state-of-the-art AI/ML models.
ML/AI problem solving tips with multiple case studies to tackle real-world challenges. Description
This book approaches data science solution building using a principled framework and case studies with extensive hands-on guidance. It will teach the readers optimization at each step, whether it is problem formulation or hyperparameter tuning for deep learning models.
This book keeps the reader pragmatic and guides them toward practical solutions by discussing the essential ML concepts, including problem formulation, data preparation, and evaluation techniques. Further, the reader will be able to learn how to apply model optimization with advanced algorithms, hyperparameter tuning, and strategies against overfitting. They will also benefit from deep learning by optimizing models for image processing, natural language processing, and specialized applications. The reader can put theory into practice with hands-on case studies and code examples, reinforcing their understanding.
With this book, the reader will be able to create high-impact, high-value ML/AI solutions by optimizing each step of the solution building process, which is the ultimate goal of every data science professional. What you will learn
End-to-end solutions to ML/AI problems.
Data augmentation and transfer learning.
Optimizing AI/ML solutions at each step of development.
Multiple hands-on real case studies.
Choose between various ML/AI models. Who this book is for
This book empowers data scientists, developers, and AI enthusiasts at all levels to unlock the full potential of their ML solutions. This guide equips you to become a confident AI optimization expert. Table of Contents
1. Optimizing a Machine Learning /Artificial Intelligence Solution
2. ML Problem Formulation: Setting the Right Objective
3. Data Collection and Pre-processing
4. Model Evaluation and Debugging
5. Imbalanced Machine Learning
6. Hyper-parameter Tuning
7. Parameter Optimization Algorithms
8. Optimizing Deep Learning Models
9. Optimizing Image Models
10. Optimizing Natural Language Processing Models
11. Transfer Learning
Build and fine-tune models for maximum performance.
Practical tips to make your own state-of-the-art AI/ML models.
ML/AI problem solving tips with multiple case studies to tackle real-world challenges. Description
This book approaches data science solution building using a principled framework and case studies with extensive hands-on guidance. It will teach the readers optimization at each step, whether it is problem formulation or hyperparameter tuning for deep learning models.
This book keeps the reader pragmatic and guides them toward practical solutions by discussing the essential ML concepts, including problem formulation, data preparation, and evaluation techniques. Further, the reader will be able to learn how to apply model optimization with advanced algorithms, hyperparameter tuning, and strategies against overfitting. They will also benefit from deep learning by optimizing models for image processing, natural language processing, and specialized applications. The reader can put theory into practice with hands-on case studies and code examples, reinforcing their understanding.
With this book, the reader will be able to create high-impact, high-value ML/AI solutions by optimizing each step of the solution building process, which is the ultimate goal of every data science professional. What you will learn
End-to-end solutions to ML/AI problems.
Data augmentation and transfer learning.
Optimizing AI/ML solutions at each step of development.
Multiple hands-on real case studies.
Choose between various ML/AI models. Who this book is for
This book empowers data scientists, developers, and AI enthusiasts at all levels to unlock the full potential of their ML solutions. This guide equips you to become a confident AI optimization expert. Table of Contents
1. Optimizing a Machine Learning /Artificial Intelligence Solution
2. ML Problem Formulation: Setting the Right Objective
3. Data Collection and Pre-processing
4. Model Evaluation and Debugging
5. Imbalanced Machine Learning
6. Hyper-parameter Tuning
7. Parameter Optimization Algorithms
8. Optimizing Deep Learning Models
9. Optimizing Image Models
10. Optimizing Natural Language Processing Models
11. Transfer Learning
Wybrane bestsellery
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@helion.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Proszę czekać...
Oceny i opinie klientów: Optimizing AI and Machine Learning Solutions Mirza Rahim Baig (0) Weryfikacja opinii następuję na podstawie historii zamówień na koncie Użytkownika umieszczającego opinię. Użytkownik mógł otrzymać punkty za opublikowanie opinii uprawniające do uzyskania rabatu w ramach Programu Punktowego.