×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Implement NLP use-cases using BERT Amandeep

(ebook) (audiobook) (audiobook) Książka w języku 1
Implement NLP use-cases using BERT Amandeep - okladka książki

Implement NLP use-cases using BERT Amandeep - okladka książki

Implement NLP use-cases using BERT Amandeep - audiobook MP3

Implement NLP use-cases using BERT Amandeep - audiobook CD

Autor:
Amandeep
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
164
Dostępne formaty:
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
State-of-the-art BERT implementation for text classification

Description
This book provides a solid foundation for Natural Language Processing with pragmatic explanation and implementation of a wide variety of industry wide scenarios. After reading this book, one can simply jump to solve real world problems and join the league of NLP developers.

It starts with the introduction of Natural Language Processing and provides a good explanation of different practical situations which are currently implemented across the globe. Thereafter, it takes a deep dive into the text classification with different types of algorithms to implement the same. Then, it further introduces the second important NLP use case called Named Entity Recognition with its popular algorithm choices. Thereafter, it provides an introduction to a state of the art language model called BERT and its application.

What you will learn
Learn to implement transfer learning on pre-trained BERT models.
Learn to demonstrate a production ready Text Classification for domain specific data and networking using Python 3.x.
Learn about the domain specific pre trained models with a library called `aiops` which has been specially designed for this book.

Who this book is for
This book is meant for Data Scientists and Machine Learning Engineers who are new to Natural Language Processing and want to quickly implement different NLP use-cases. Readers should have a basic knowledge of Python before reading the book.

Table of Contents
1. Introduction to NLP and Different Use-Cases
2. Deep Dive into Text Classification and Different Types of Algorithms in Industry
3. Named Entity Recognition
4. BERT and its Application
5. BERT: Text Classification
6. BERT: Text Classification Code

About the Authors
Amandeep has been working as a technical lead in the field of software development at the time of publishing this book. He has worked for almost eight years in a few of the top MNCs.

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
67,43 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.