Hands-on Supervised Learning with Python Gnana Lakshmi T C, Madeleine Shang
(ebook)
(audiobook)
(audiobook)
- Autorzy:
- Gnana Lakshmi T C, Madeleine Shang
- Wydawnictwo:
- BPB Publications
- Ocena:
- Stron:
- 384
- Dostępne formaty:
-
ePubMobi
Zostało Ci
na świąteczne zamówienie
opcje wysyłki »
Opis
książki
:
Hands-on Supervised Learning with Python
Hands-On ML problem solving and creating solutions using Python.
Key FeaturesIntroduction to Python Programming
Python for Machine Learning
Introduction to Machine Learning
Introduction to Predictive Modelling, Supervised and Unsupervised Algorithms
Linear Regression, Logistic Regression and Support Vector Machines
Description
You will learn about the fundamentals of Machine Learning and Python programming post, which you will be introduced to predictive modelling and the different methodologies in predictive modelling. You will be introduced to Supervised Learning algorithms and Unsupervised Learning algorithms and the difference between them.
We will focus on learning supervised machine learning algorithms covering Linear Regression, Logistic Regression, Support Vector Machines, Decision Trees and Artificial Neural Networks. For each of these algorithms, you will work hands-on with open-source datasets and use python programming to program the machine learning algorithms. You will learn about cleaning the data and optimizing the features to get the best results out of your machine learning model. You will learn about the various parameters that determine the accuracy of your model and how you can tune your model based on the reflection of these parameters.
What You Will Learn
Get a clear vision of what is Machine Learning and get familiar with the foundation principles of Machine learning.
Understand the Python language-specific libraries available for Machine learning and be able to work with those libraries.
Explore the different Supervised Learning based algorithms in Machine Learning and know how to implement them when a real-time use case is presented to you.
Have hands-on with Data Exploration, Data Cleaning, Data Preprocessing and Model implementation.
Get to know the basics of Deep Learning and some interesting algorithms in this space.
Choose the right model based on your problem statement and work with EDA techniques to get good accuracy on your model
Who this book is for
This book is for anyone interested in understanding Machine Learning. Beginners, Machine Learning Engineers and Data Scientists who want to get familiar with Supervised Learning algorithms will find this book helpful.
Table of Contents
1. Introduction to Python Programming
2. Python for Machine Learning
3. Introduction to Machine Learning
4. Supervised Learning and Unsupervised Learning
5. Linear Regression: A Hands-on guide 6. Logistic Regression An Introduction
7. A sneak peek into the working of Support Vector machines(SVM)
8. Decision Trees
9. Random Forests
10. Time Series models in Machine Learning
11. Introduction to Neural Networks
12. Recurrent Neural Networks
13. Convolutional Neural Networks
14. Performance Metrics
15. Introduction to Design Thinking
16. Design Thinking Case Study
About the Author
Gnana Lakshmi T C iis Technology Geek, Innovator, Keynote speaker, Community builder and holds a Bachelor degree in Computer Science from National Institute of Technology, Tiruchirappalli. She is currently associated with WileyNXT as Product Manager; Emerging Technologies. She is also a Fellow Alumni at WomenWhoCode and started WomenWhoCode Blockchain community (www.womenwhocode.com/blockchain). She harnesses her knowledge by sharing it with others by conducting live events like webinars and workshops and through online channels like tutorials, social media posts etc. She has conducted several meetups on Machine learning, Blockchain and various other emerging technology topics including a recent meetup at the International Open UP Summit on GPT-3.
LinkedIn Profile: https://www.linkedin.com/in/gyan-lakshmi
Madeleine Shang is a Recommender Systems Team Lead @OpenMined. She started the Data Science and Machine Learning community at WomenWhoCode which is now successfully running with 2147 members. She is an expert in AI and Blockchain Research. She has been involved in many startups as a Founder. She is an Adventurer and Futurist at heart.
LinkedIn Profile: https://www.linkedin.com/in/madeleine-shang/
Key Features
Description
You will learn about the fundamentals of Machine Learning and Python programming post, which you will be introduced to predictive modelling and the different methodologies in predictive modelling. You will be introduced to Supervised Learning algorithms and Unsupervised Learning algorithms and the difference between them.
We will focus on learning supervised machine learning algorithms covering Linear Regression, Logistic Regression, Support Vector Machines, Decision Trees and Artificial Neural Networks. For each of these algorithms, you will work hands-on with open-source datasets and use python programming to program the machine learning algorithms. You will learn about cleaning the data and optimizing the features to get the best results out of your machine learning model. You will learn about the various parameters that determine the accuracy of your model and how you can tune your model based on the reflection of these parameters.
What You Will Learn
Who this book is for
This book is for anyone interested in understanding Machine Learning. Beginners, Machine Learning Engineers and Data Scientists who want to get familiar with Supervised Learning algorithms will find this book helpful.
Table of Contents
1. Introduction to Python Programming
2. Python for Machine Learning
3. Introduction to Machine Learning
4. Supervised Learning and Unsupervised Learning
5. Linear Regression: A Hands-on guide 6. Logistic Regression An Introduction
7. A sneak peek into the working of Support Vector machines(SVM)
8. Decision Trees
9. Random Forests
10. Time Series models in Machine Learning
11. Introduction to Neural Networks
12. Recurrent Neural Networks
13. Convolutional Neural Networks
14. Performance Metrics
15. Introduction to Design Thinking
16. Design Thinking Case Study
About the Author
Gnana Lakshmi T C iis Technology Geek, Innovator, Keynote speaker, Community builder and holds a Bachelor degree in Computer Science from National Institute of Technology, Tiruchirappalli. She is currently associated with WileyNXT as Product Manager; Emerging Technologies. She is also a Fellow Alumni at WomenWhoCode and started WomenWhoCode Blockchain community (www.womenwhocode.com/blockchain). She harnesses her knowledge by sharing it with others by conducting live events like webinars and workshops and through online channels like tutorials, social media posts etc. She has conducted several meetups on Machine learning, Blockchain and various other emerging technology topics including a recent meetup at the International Open UP Summit on GPT-3.
LinkedIn Profile: https://www.linkedin.com/in/gyan-lakshmi
Madeleine Shang is a Recommender Systems Team Lead @OpenMined. She started the Data Science and Machine Learning community at WomenWhoCode which is now successfully running with 2147 members. She is an expert in AI and Blockchain Research. She has been involved in many startups as a Founder. She is an Adventurer and Futurist at heart.
LinkedIn Profile: https://www.linkedin.com/in/madeleine-shang/
BPB Publications - inne książki
Dzięki opcji "Druk na żądanie" do sprzedaży wracają tytuły Grupy Helion, które cieszyły sie dużym zainteresowaniem, a których nakład został wyprzedany.
Dla naszych Czytelników wydrukowaliśmy dodatkową pulę egzemplarzy w technice druku cyfrowego.
Co powinieneś wiedzieć o usłudze "Druk na żądanie":
- usługa obejmuje tylko widoczną poniżej listę tytułów, którą na bieżąco aktualizujemy;
- cena książki może być wyższa od początkowej ceny detalicznej, co jest spowodowane kosztami druku cyfrowego (wyższymi niż koszty tradycyjnego druku offsetowego). Obowiązująca cena jest zawsze podawana na stronie WWW książki;
- zawartość książki wraz z dodatkami (płyta CD, DVD) odpowiada jej pierwotnemu wydaniu i jest w pełni komplementarna;
- usługa nie obejmuje książek w kolorze.
Masz pytanie o konkretny tytuł? Napisz do nas: sklep@helion.pl
Proszę wybrać ocenę!
Proszę wpisać opinię!
Książka drukowana
Proszę czekać...
Oceny i opinie klientów: Hands-on Supervised Learning with Python Gnana Lakshmi T C, Madeleine Shang (0) Weryfikacja opinii następuję na podstawie historii zamówień na koncie Użytkownika umieszczającego opinię. Użytkownik mógł otrzymać punkty za opublikowanie opinii uprawniające do uzyskania rabatu w ramach Programu Punktowego.