×
sukces
Dodano do koszyka:
sukces
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
sukces
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
sukces
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Data Engineering for AI Sundeep Goud Katta, Lav Kumar

(ebook) (audiobook) (audiobook) Język publikacji: angielski
Data Engineering for AI Sundeep Goud Katta, Lav Kumar - okladka książki

Data Engineering for AI Sundeep Goud Katta, Lav Kumar - okladka książki

Data Engineering for AI Sundeep Goud Katta, Lav Kumar - audiobook MP3

Data Engineering for AI Sundeep Goud Katta, Lav Kumar - audiobook CD

Autorzy:
Sundeep Goud Katta, Lav Kumar
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
320
Dostępne formaty:
     ePub
     Mobi

Ebook (80,91 zł najniższa cena z 30 dni)

94,99 zł (-10%)
85,49 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(80,91 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Description
Data engineering is the critical discipline of building and maintaining the systems that enable organizations to collect, store, process, and analyze vast amounts of data, especially for advanced applications like AI and ML. It is about ensuring that it is reliable, accessible, and high-quality for everyone who needs it.

This book provides a thorough exploration of the complete data lifecycle, starting with data engineering's development and its vital link to AI. It provides an overview of scalable data practices, from legacy systems to cutting-edge techniques. The reader will explore real-time data collection, secure ingestion, optimized storage, and dynamic processing techniques. The book features detailed discussions on ETL and ELT frameworks, performance tuning, and quality assurance that are complemented by real-world case studies. All these empower the data engineers to design systems that are seamless and integrate well with AI pipelines, driving innovation across diverse industries.

By the end of this book, readers will be well-equipped to design, implement, and manage scalable data engineering solutions that effectively support and drive AI initiatives within any organization.

What you will learn
Design real-time data ingestion and processing systems.
Implement optimized data storage solutions for AI workloads.
Ensure data quality, compliance in dynamically changing environments.
Build scalable data collection methods, including for AI training data.
Apply data engineering solutions in complex, real-world AI projects.
Conduct SQL analytics and craft insightful, AI-driven visualizations.

Who this book is for
This book is for data engineers, AI practitioners, and curious professionals with a foundational understanding of databases, programming, and ETL processes. A basic understanding of computer science concepts, cloud computing, and analytics is helpful.

Table of Contents
1. Introduction to Data Engineering in AI
2. Managing Data Collection
3. Data Ingestion in Action
4. Data Storage in Real-time
5. Data Processing Techniques and Best Practices
6. Data Integration and Interoperability
7. Ensuring Data Quality
8. Understanding Data Analytics
9. Data Visualization and Reporting
10. Operational Data Security
11. Protecting Data Privacy
12. Data Engineering Case Studies

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
85,49 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint