ODBIERZ TWÓJ BONUS :: »

Czyszczenie danych w Pythonie. Receptury. Nowoczesne techniki i narzędzia Pythona do wykrywania i eliminacji zanieczyszczeń oraz wydobywania kluczowych cech z danych (ebook)(audiobook)(audiobook)

Wydawnictwo:
Helion
Wydawnictwo:
Helion
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
328
Druk:
oprawa miękka
3w1 w pakiecie:
     PDF
     ePub
     Mobi

Książka

79,00 zł
47,40 zł

Dodaj do koszyka Wysyłamy w 24h

Ebook

79,00 zł
47,40 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Do przechowalni

Powiadom o dostępności audiobooka »

Przetwarzanie dużych ilości danych daje wiedzę, która leży u podstaw istotnych decyzji podejmowanych przez organizację. Pozwala to na uzyskiwanie znakomitych efektów: techniki wydobywania wiedzy z danych stają się coraz bardziej wyrafinowane. Podstawowym warunkiem sukcesu jest uzyskanie odpowiedniej jakości danych. Wykorzystanie niespójnych i niepełnych informacji prowadzi do podejmowania błędnych decyzji. Konsekwencją mogą być straty finansowe, stwarzanie konkretnych zagrożeń czy uszczerbek na wizerunku. A zatem oczyszczanie jest wyjątkowo ważną częścią analizy danych.

Ta książka jest praktycznym zbiorem gotowych do użycia receptur, podanych tak, aby maksymalnie ułatwić proces przygotowania danych do analizy. Omówiono tu takie kwestie dotyczące danych jak importowanie, ocena ich jakości, uzupełnianie braków, porządkowanie i agregacja, a także przekształcanie. Poza zwięzłym omówieniem tych zadań zaprezentowano najskuteczniejsze techniki ich wykonywania za pomocą różnych narzędzi: Pandas, NumPy, Matplotlib czy SciPy. W ramach każdej receptury wyjaśniono skutki podjętych działań. Cennym uzupełnieniem jest zestaw funkcji i klas zdefiniowanych przez użytkownika, które służą do automatyzacji oczyszczania danych. Umożliwiają one też dostrojenie procesu do konkretnych potrzeb.

W książce znajdziesz receptury, dzięki którym:

  • wczytasz i przeanalizujesz dane z różnych źródeł
  • uporządkujesz dane, poprawisz ich błędy i uzupełnisz braki
  • efektywnie skorzystasz z bibliotek Pythona
  • zastosujesz wizualizacje do analizy danych
  • napiszesz własne funkcje i klasy do automatyzacji procesu oczyszczania danych

Prawdziwą wartość mają tylko oczyszczone i spójne dane!

O autorze

1 Michael Walker

Michael Walker jest analitykiem danych. Od ponad trzydziestu lat zajmuje się tym zagadnieniem w różnych instytucjach edukacyjnych. Od 2006 roku prowadzi na wyższych uczelniach zajęcia z analizy danych, metod badawczych, statystyki i programowania. Poza tym tworzy raporty dla fundacji i sektora publicznego, a także publikuje analizy w czasopismach naukowych.

Zamknij

Wybierz metodę płatności