ODBIERZ TWÓJ BONUS :: »

Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing (ebook)(audiobook)(audiobook) Książka w języku angielskim

Okładka książki/ebooka Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

Okładka książki Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

Okładka książki Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

Okładka książki Streaming Systems. The What, Where, When, and How of Large-Scale Data Processing

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
352
2w1 w pakiecie:
     ePub
     Mobi

Ebook

169,00 zł
139,25 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

Poleć tę książkę znajomemu Poleć tę książkę znajomemu!!

Przenieś na półkę

Do przechowalni

Streaming data is a big deal in big data these days. As more and more businesses seek to tame the massive unbounded data sets that pervade our world, streaming systems have finally reached a level of maturity sufficient for mainstream adoption. With this practical guide, data engineers, data scientists, and developers will learn how to work with streaming data in a conceptual and platform-agnostic way.

Expanded from Tyler Akidau’s popular blog posts "Streaming 101" and "Streaming 102", this book takes you from an introductory level to a nuanced understanding of the what, where, when, and how of processing real-time data streams. You’ll also dive deep into watermarks and exactly-once processing with co-authors Slava Chernyak and Reuven Lax.

You’ll explore:

  • How streaming and batch data processing patterns compare
  • The core principles and concepts behind robust out-of-order data processing
  • How watermarks track progress and completeness in infinite datasets
  • How exactly-once data processing techniques ensure correctness
  • How the concepts of streams and tables form the foundations of both batch and streaming data processing
  • The practical motivations behind a powerful persistent state mechanism, driven by a real-world example
  • How time-varying relations provide a link between stream processing and the world of SQL and relational algebra
0 Tyler Akidau, Slava Chernyak, Reuven Lax

Zamknij

Wybierz metodę płatności