×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Data Mesh Pradeep Menon

(ebook) (audiobook) (audiobook) Książka w języku 1
Autor:
Pradeep Menon
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
282
Dostępne formaty:
     ePub
     Mobi
Czytaj fragment
Data Mesh: The future of data architecture!

Key Features
Decentralize data with domain-oriented design.
Enhance scalability and data autonomy.
Implement robust governance across domains.

Description
"Data Mesh: Principles, patterns, architecture, and strategies for data-driven decision making" introduces Data Mesh which is a macro data architecture pattern designed to harmonize governance with flexibility.

This book guides readers through the nuances of Data Mesh topologies, explaining how they can be tailored to meet specific organizational needs while balancing central control with domain-specific autonomy. The book delves into the Data Mesh governance framework, which provides a structured approach to manage and control decentralized data assets effectively. It emphasizes the importance of a well-implemented governance structure that ensures data quality, compliance, and access control across various domains. Additionally, the book outlines robust data cataloging and sharing strategies, enabling organizations to improve data discoverability, usage, and interoperability between cross-functional teams. Securing Data Mesh architectures is another critical focus. The text explores comprehensive security strategies that protect data across different layers of the architecture, ensuring data integrity and protecting against breaches.

By implementing the strategies discussed, data professionals will strengthen their ability to safeguard sensitive information in a distributed environment, making this book a vital resource for anyone involved in data management, security, or governance.

What you will learn
Understand the evolution and need for Data Mesh architectures.
Learn the core principles and design for Data Mesh implementations.
Identify and apply Data Mesh architectural patterns and components.
Implement effective Data Mesh governance frameworks.
Develop and execute a strategic data cataloging plan.
Create comprehensive data-sharing strategies and security strategies within Data Mesh.

Who this book is for
This book is ideal for data professionals, including chief data officers, chief analytics officers, chief information officers, enterprise data architects, data stewards, and data governance and compliance professionals.

Table of Contents
1. Establishing the Data Mesh Context
2. Evolution of Data Architectures
3. Principles of Data Mesh Architecture
4. The Patterns of Data Mesh Architecture
5. Data Governance in a Data Mesh
6. Data Cataloging in a Data Mesh
7. Data Sharing in a Data Mesh
8. Data Security in a Data Mesh
9. Data Mesh in Practice
Appendix: Key terms

Wybrane bestsellery

O autorze książki

Pradeep Menon is a seasoned data analytics professional with more than 18 years of experience in data and AI.

Pradeep can balance business and technical aspects of any engagement and cross-pollinate complex concepts across many industries and scenarios.

Currently, Pradeep works as a data and AI strategist at Microsoft. In this role, he is responsible for driving big data and AI adoption for Microsoft’s strategic customers across Asia.

Pradeep is also a distinguished speaker and blogger and has given numerous keynotes on cloud technologies, data, and AI.

BPB Publications - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
67,43 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.