×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

XGBoost for Regression Predictive Modeling and Time Series Analysis. Build intuitive understanding, develop, build, evaluate and deploy model

(ebook) (audiobook) (audiobook) Książka w języku angielskim
XGBoost for Regression Predictive Modeling and Time Series Analysis. Build intuitive understanding, develop, build, evaluate and deploy model Pritam Deka, Joyce Weiner - okladka książki

XGBoost for Regression Predictive Modeling and Time Series Analysis. Build intuitive understanding, develop, build, evaluate and deploy model Pritam Deka, Joyce Weiner - okladka książki

XGBoost for Regression Predictive Modeling and Time Series Analysis. Build intuitive understanding, develop, build, evaluate and deploy model Pritam Deka, Joyce Weiner - audiobook MP3

XGBoost for Regression Predictive Modeling and Time Series Analysis. Build intuitive understanding, develop, build, evaluate and deploy model Pritam Deka, Joyce Weiner - audiobook CD

Ocena:
Stron:
116
XGBoost is a popular open-source library that provides an efficient, effective, scalable and high-performance implementation of the gradient boosting algorithm. You will be able to build an intuitive and practical understanding of the XGBoost algorithm through our demystifying the complex math underneath and explanation of XGBoost’s benefits over other decision tree ensemble models, including when to use XGBoost or other prediction algorithms. This book provides a hands-on approach to implementation of the XGBoost Python API as well as the scikit-learn API that will help one to be up-and-running and productive in no time. with step-by-step explanations of essential concepts, as well as practical examples, this book begins with a brief introduction to machine learning concepts, then dives into the fundamentals of XGBoost and its benefits before exploring practical applications. You will get hands-on experience using XGBoost through practical use cases on classification, regression, and time-series data. By the end of this book, you will have an understanding of the XGBoost algorithm, have installed the XGBoost API, downloaded and prepared a practical dataset, trained the XGBoost model, make predictions, and evaluated and deployed models using the Python and scikit-learn API.

Wybrane bestsellery

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Zamknij Pobierz aplikację mobilną Ebookpoint