×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

The Handbook of NLP with Gensim. Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data

(ebook) (audiobook) (audiobook) Książka w języku 1
Autor:
Chris Kuo
The Handbook of NLP with Gensim. Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data Chris Kuo - okladka książki

The Handbook of NLP with Gensim. Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data Chris Kuo - okladka książki

The Handbook of NLP with Gensim. Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data Chris Kuo - audiobook MP3

The Handbook of NLP with Gensim. Leverage topic modeling to uncover hidden patterns, themes, and valuable insights within textual data Chris Kuo - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
310
Dostępne formaty:
     PDF
     ePub

Ebook (29,90 zł najniższa cena z 30 dni)

139,00 zł (-10%)
125,10 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(29,90 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Navigating the terrain of NLP research and applying it practically can be a formidable task made easy with The Handbook of NLP with Gensim. This book demystifies NLP and equips you with hands-on strategies spanning healthcare, e-commerce, finance, and more to enable you to leverage Gensim in real-world scenarios.
You’ll begin by exploring motives and techniques for extracting text information like bag-of-words, TF-IDF, and word embeddings. This book will then guide you on topic modeling using methods such as Latent Semantic Analysis (LSA) for dimensionality reduction and discovering latent semantic relationships in text data, Latent Dirichlet Allocation (LDA) for probabilistic topic modeling, and Ensemble LDA to enhance topic modeling stability and accuracy.
Next, you’ll learn text summarization techniques with Word2Vec and Doc2Vec to build the modeling pipeline and optimize models using hyperparameters. As you get acquainted with practical applications in various industries, this book will inspire you to design innovative projects. Alongside topic modeling, you’ll also explore named entity handling and NER tools, modeling procedures, and tools for effective topic modeling applications.
By the end of this book, you’ll have mastered the techniques essential to create applications with Gensim and integrate NLP into your business processes.

Wybrane bestsellery

O autorze książki

Chris Kuo is a data scientist with over 23 years of experience. He led various data science solutions including customer analytics, health analytics, fraud detection, and litigation. He is also an inventor of a U.S. patent. He has worked at several Fortune 500 companies in the insurance and retail industries.
Chris teaches at Columbia University and has taught at Boston University and other universities. He has published articles in economic and management journals and served as a journal reviewer. He is the author of the eXplainable A.I., Modern Time Series Anomaly Detection, Transfer Learning for Image Classification, and The Handbook of Anomaly Detection. He received his undergraduate degree in Nuclear Engineering and Ph.D. in Economics.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint