×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Scaling Google Cloud Platform Swapnil Dubey

(ebook) (audiobook) (audiobook) Książka w języku 1
Scaling Google Cloud Platform Swapnil Dubey - okladka książki

Scaling Google Cloud Platform Swapnil Dubey - okladka książki

Scaling Google Cloud Platform Swapnil Dubey - audiobook MP3

Scaling Google Cloud Platform Swapnil Dubey - audiobook CD

Autor:
Swapnil Dubey
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
358
Dostępne formaty:
     ePub
     Mobi
Zostało Ci na świąteczne zamówienie opcje wysyłki »
Managing Real-world Production-grade Challenges at Scale

Key Features
Built for GCP professionals and Cloud enthusiasts with cloud-agnostic tactics.
Exhaustive coverage of automatic, manual, and predictive scaling and specialized strategies.
Every concept is pragmatized with real-time production scenarios derived from prominent technologists.

Description
Scaling Google Cloud Platform equips developers with the know-how to get the most out of its services in storage, serverless computing, networking, infrastructure monitoring, and other IT tasks. This book explains the fundamentals of cloud scaling, including Cloud Elasticity, creating cloud workloads, and selecting the appropriate cloud scaling key performance indicators (KPIs).

The book explains the sections of GCP resources that can be scaled, as well as their architecture and internals, and best practices for using these components in an operational setting in detail. The book also discusses scaling techniques such as predictive scaling, auto-scaling, and manual scaling. This book includes real-world examples illustrating how to scale many Google Cloud services, including the compute engine, GKE, VMWare Engine, Cloud Function, Cloud Run, App Engine, BigTable, Spanner, Composer, Dataproc, and Dataflow.

At the end of the book, the author delves into the two most common architecturesMicroservices and Bigdata to examine how you can perform reliability engineering for them on GCP.

What you will learn
Learn workload migration strategy and execution, both within and between clouds.
Explore methods of increasing Google Cloud capacity for running VMware Engine and containerized applications.
Scaling up and down methods include manual, predictive, and automatic approaches.
Increase the capacity of your Dataproc cluster to handle your big data computing needs.
Learn Google Dataflow's scalability considerations for large-scale installations.
Explore Google Composer 2 and scale up your Cloud Spanner instances.
Learn to set up Cloud functions and Cloud run.
Discuss general SRE procedures on microservices and big data.

Who this book is for
This book is designed for Cloud professionals, software developers, architects, DevOps team, and engineering managers to explain scaling strategies for GCP services and assumes readers know GCP basics.

Table of Contents
1. Basics of Scaling Cloud Resources
2. KPI for Cloud Scalability
3. Cloud Elasticity
4. Challenges of Infrastructure Complexity and the Way Forward
5. Scaling Compute Engine
6. Scaling Kubernetes Engine
7. Scaling VMware Engine
8. Scaling App Engine
9. Scaling Google Cloud Function and Cloud Run
10. Configuring Bigtable for Scale
11. Configuring Cloud Spanner for Scale
12. Scaling Google Composer 2
13. Scaling Google Dataproc
14. Scaling Google Dataflow
15. Site Reliability Engineering
16. SRE Use Cases

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
84,99 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.