×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits. A practical guide to implementing supervised and unsupervised machine learning algorithms in Python Tarek Amr

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits. A practical guide to implementing supervised and unsupervised machine learning algorithms in Python Tarek Amr - okladka książki

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits. A practical guide to implementing supervised and unsupervised machine learning algorithms in Python Tarek Amr - okladka książki

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits. A practical guide to implementing supervised and unsupervised machine learning algorithms in Python Tarek Amr - audiobook MP3

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits. A practical guide to implementing supervised and unsupervised machine learning algorithms in Python Tarek Amr - audiobook CD

Autor:
Tarek Amr
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
384
Dostępne formaty:
     PDF
     ePub
     Mobi
Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.
The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You’ll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you’ll gain a thorough understanding of its theory and learn when to apply it. As you advance, you’ll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.
By the end of this machine learning book, you’ll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You’ll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.

Wybrane bestsellery

O autorze książki

Tarek Amr has 8 years of experience in data science and machine learning. After finishing his postgraduate degree at the University of East Anglia, he worked in a number of startups and scale-up companies in Egypt and the Netherlands. This is his second data-related book. His previous book covered data visualization using D3.js. He enjoys giving talks and writing about different computer science and business concepts and explaining them to a wider audience. He can be reached on Twitter at @gr33ndata. He is happy to respond to all questions related to this book. Feel free to get in touch with him if any parts of the book need clarification or if you would like to discuss any of the concepts here in more detail.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
107,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.