×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Learn Amazon SageMaker. A guide to building, training, and deploying machine learning models for developers and data scientists Julien Simon, Francesco Pochetti

(ebook) (audiobook) (audiobook) Książka w języku angielskim
Learn Amazon SageMaker. A guide to building, training, and deploying machine learning models for developers and data scientists Julien Simon, Francesco Pochetti - okladka książki

Learn Amazon SageMaker. A guide to building, training, and deploying machine learning models for developers and data scientists Julien Simon, Francesco Pochetti - okladka książki

Learn Amazon SageMaker. A guide to building, training, and deploying machine learning models for developers and data scientists Julien Simon, Francesco Pochetti - audiobook MP3

Learn Amazon SageMaker. A guide to building, training, and deploying machine learning models for developers and data scientists Julien Simon, Francesco Pochetti - audiobook CD

Autorzy:
Julien Simon, Francesco Pochetti
Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
490
Dostępne formaty:
     PDF
     ePub
     Mobi
Amazon SageMaker enables you to quickly build, train, and deploy machine learning (ML) models at scale, without managing any infrastructure. It helps you focus on the ML problem at hand and deploy high-quality models by removing the heavy lifting typically involved in each step of the ML process. This book is a comprehensive guide for data scientists and ML developers who want to learn the ins and outs of Amazon SageMaker.
You’ll understand how to use various modules of SageMaker as a single toolset to solve the challenges faced in ML. As you progress, you’ll cover features such as AutoML, built-in algorithms and frameworks, and the option for writing your own code and algorithms to build ML models. Later, the book will show you how to integrate Amazon SageMaker with popular deep learning libraries such as TensorFlow and PyTorch to increase the capabilities of existing models. You’ll also learn to get the models to production faster with minimum effort and at a lower cost. Finally, you’ll explore how to use Amazon SageMaker Debugger to analyze, detect, and highlight problems to understand the current model state and improve model accuracy.
By the end of this Amazon book, you’ll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.

Wybrane bestsellery

O autorze książki

Julien Simon is a Principal Developer Advocate for AI & Machine Learning at Amazon Web Services. He focuses on helping developers and enterprises bring their ideas to life. He frequently speaks at conferences, blogs on the AWS Blog and on Medium, and he also runs an AI/ML podcast.
Prior to joining AWS, Julien served for 10 years as CTO/VP Engineering in top-tier web startups where he led large Software and Ops teams in charge of thousands of servers worldwide. In the process, he fought his way through a wide range of technical, business and procurement issues, which helped him gain a deep understanding of physical infrastructure, its limitations and how cloud computing can help.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
125,10 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint
Zabrania się wykorzystania treści strony do celów eksploracji tekstu i danych (TDM), w tym eksploracji w celu szkolenia technologii AI i innych systemów uczenia maszynowego. It is forbidden to use the content of the site for text and data mining (TDM), including mining for training AI technologies and other machine learning systems.