×
sukces
Dodano do koszyka:
sukces
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
sukces
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
sukces
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

Hands-On MLOps on Azure. Automate, Secure & Scale ML Workflows with Azure ML CLI, GitHub & LLMOps Banibrata De

(ebook) (audiobook) (audiobook) Język publikacji: angielski
Hands-On  MLOps on Azure. Automate, Secure & Scale ML Workflows with Azure ML CLI, GitHub & LLMOps Banibrata De - okladka książki

Hands-On  MLOps on Azure. Automate, Secure & Scale ML Workflows with Azure ML CLI, GitHub & LLMOps Banibrata De - okladka książki

Hands-On  MLOps on Azure. Automate, Secure & Scale ML Workflows with Azure ML CLI, GitHub & LLMOps Banibrata De - audiobook MP3

Hands-On  MLOps on Azure. Automate, Secure & Scale ML Workflows with Azure ML CLI, GitHub & LLMOps Banibrata De - audiobook CD

Autor:
Banibrata De
Ocena:
Effective machine learning (ML) now demands not just building models, but deploying and managing them at scale. Written by a seasoned senior software engineer with high-level expertise in both MLOps and LLMOps, MLOps for DevOps and Cloud Engineers equips ML practitioners, DevOps engineers, and cloud professionals with the skills to automate, monitor, and scale ML systems across environments.
The book begins with MLOps fundamentals and their roots in DevOps, exploring training workflows, model versioning, and reproducibility using pipelines. You'll implement CI/CD with GitHub Actions and Azure ML CLI, automate deployments, and manage governance and alerting for enterprise use. The author draws on their production ML experience to provide you with actionable guidance and real-world examples. A dedicated section on LLMOps covers operationalizing large language models (LLMs) like GPT-4 using RAG patterns, evaluation techniques, and responsible AI practices. You’ll also work with case studies across Azure, AWS, and GCP that offer practical context for multi-cloud operations.
Whether you're building pipelines, packaging models, or deploying LLMs, this guide delivers end-to-end strategy to build robust, scalable systems. By the end of this book, you'll be ready to design, deploy, and maintain enterprise-grade ML solutions with confidence.

O autorze książki

Banibrata De is a seasoned Senior Software Engineer at Microsoft's Core AI group in Redmond. With deep expertise in both MLOps and LLMOps, Banibrata has contributed to a wide range of AI-driven products. Prior to this, he played a key role in enhancing security for Microsoft customers as part of the Windows Defender team and optimized performance across critical Microsoft services to elevate user experience. He holds a degree in Computer Science from Jadavpur University, Kolkata, India.

Packt Publishing - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Zamknij Pobierz aplikację mobilną Ebookpoint