×
Dodano do koszyka:
Pozycja znajduje się w koszyku, zwiększono ilość tej pozycji:
Zakupiłeś już tę pozycję:
Książkę możesz pobrać z biblioteki w panelu użytkownika
Pozycja znajduje się w koszyku
Przejdź do koszyka

Zawartość koszyka

ODBIERZ TWÓJ BONUS :: »

MapReduce Design Patterns. Building Effective Algorithms and Analytics for Hadoop and Other Systems

(ebook) (audiobook) (audiobook) Książka w języku angielskim
MapReduce Design Patterns. Building Effective Algorithms and Analytics for Hadoop and Other Systems Donald Miner, Adam Shook - okladka książki

MapReduce Design Patterns. Building Effective Algorithms and Analytics for Hadoop and Other Systems Donald Miner, Adam Shook - okladka książki

MapReduce Design Patterns. Building Effective Algorithms and Analytics for Hadoop and Other Systems Donald Miner, Adam Shook - audiobook MP3

MapReduce Design Patterns. Building Effective Algorithms and Analytics for Hadoop and Other Systems Donald Miner, Adam Shook - audiobook CD

Ocena:
Bądź pierwszym, który oceni tę książkę
Stron:
250
Dostępne formaty:
     ePub
     Mobi

Ebook (143,65 zł najniższa cena z 30 dni)

179,00 zł (-15%)
152,15 zł

Dodaj do koszyka lub Kup na prezent Kup 1-kliknięciem

(143,65 zł najniższa cena z 30 dni)

Przenieś na półkę

Do przechowalni

Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you’re using.

Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop.

  • Summarization patterns: get a top-level view by summarizing and grouping data
  • Filtering patterns: view data subsets such as records generated from one user
  • Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier
  • Join patterns: analyze different datasets together to discover interesting relationships
  • Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job
  • Input and output patterns: customize the way you use Hadoop to load or store data

"A clear exposition of MapReduce programs for common data processing patterns—this book is indespensible for anyone using Hadoop."

--Tom White, author of Hadoop: The Definitive Guide

Wybrane bestsellery

O'Reilly Media - inne książki

Zamknij

Przenieś na półkę

Proszę czekać...
ajax-loader

Zamknij

Wybierz metodę płatności

Ebook
152,15 zł
Dodaj do koszyka
Zamknij Pobierz aplikację mobilną Ebookpoint